【技术实现步骤摘要】
一种石煤微量元素逐步浸取及赋存状态分析的方法
本专利技术属于元素地球化学分析
,具体涉及一种石煤微量元素逐步浸取及赋存状态分析的方法。
技术介绍
煤炭是一种复杂的地质产物,煤中微量元素的分布情况是多种地质因素和元素本身物化性质共同作用的结果,元素的不同赋存状态表示不同的地质成因。煤中微量元素赋存状态的研究对于元素迁移途径、释放能力及环境影响程度具有一定的指导意义,可以为煤及燃煤产物中有益元素的开发利用和煤型稀有金属元素的提取工艺提供理论支持。近年来,国外众多学者对本国煤中微量元素的赋存状态都进行了一定程度的研究,研究对象及重点主要集中于烟煤和无烟煤。石煤是一种特殊的煤(腐泥煤),外观看起来像石头,因此而得名。由于石煤含有高含量的二氧化硅,也有学者将其定义为硅质岩。石煤形成年代久远,一般在泥盆纪之前,以寒武纪早期储量最大,也有部分地区晚二叠纪分布。我国是世界上少数拥有石煤资源的地区,石煤广泛分布于我国南方各省(石煤总储量61,876.7Mt)。在我国,石煤具有久远的开采和使用历史。石煤具有高灰、高硫、低热值、伴生元素多等特点,因其伴生多种有益有害元素而备受关注。石煤中主要伴生有钒、钼、铀、磷、银、铜、锌、铂、钴、铅、镉、镓、镍、钯、钇等元素,其中钒的品位普遍较高,经常达到开采利用品位,其次是钼、铀、磷、银等。石煤一直是我国南方缺煤地区的燃料供给,在石煤燃烧过程中,由于有毒有害元素的释放,造成了严重的环境污染和人体伤害,如地方性砷中毒和氟中毒。同时,石煤中伴生有数量可观的稀有金属元素,也不能被忽视。 ...
【技术保护点】
1.一种石煤微量元素逐步浸取及赋存状态分析的方法,其特征在于,该方法包括以下步骤:/n步骤一、样品初步提取/n步骤101、根据堆锥四分法将石煤进行缩分,得到缩分样品,选取缩分样品进行破碎研磨,得到石煤样品;所述石煤样品的粒度不超过200目;/n步骤102、按照GB/T212-2008《煤的工业分析方法》对步骤101中得到的石煤样品进行工业分析指标测定,得到石煤样品的干燥基灰分产率;/n步骤103、准确称量2g步骤101中得到的石煤样品装入经超纯水清洗并烘干的50mL离心管中,然后加入50mL超纯水,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;/n步骤104、将步骤103中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液1,向离心管中的固体残渣加入50mL的1mol/L醋酸铵溶液,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;/n步骤105、将步骤104中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL ...
【技术特征摘要】
1.一种石煤微量元素逐步浸取及赋存状态分析的方法,其特征在于,该方法包括以下步骤:
步骤一、样品初步提取
步骤101、根据堆锥四分法将石煤进行缩分,得到缩分样品,选取缩分样品进行破碎研磨,得到石煤样品;所述石煤样品的粒度不超过200目;
步骤102、按照GB/T212-2008《煤的工业分析方法》对步骤101中得到的石煤样品进行工业分析指标测定,得到石煤样品的干燥基灰分产率;
步骤103、准确称量2g步骤101中得到的石煤样品装入经超纯水清洗并烘干的50mL离心管中,然后加入50mL超纯水,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;
步骤104、将步骤103中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液1,向离心管中的固体残渣加入50mL的1mol/L醋酸铵溶液,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;
步骤105、将步骤104中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液2,向离心管中的固体残渣加入50mL体积分数为25%的醋酸溶液,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中依次在96℃条件下振荡3h和室温条件下振荡21h;
步骤106、将步骤105中经室温条件下振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液3,向离心管中的固体残渣加入50mL的0.1mol/L盐酸羟胺溶液,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中依次在96℃条件下振荡3h和室温条件下振荡21h;
步骤107、将步骤106中经室温条件下振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液4,将离心管中的固体残渣在40℃条件下干燥12h,收集干燥后的粉末得到残渣1,残渣1的质量记为M1;
步骤二、残渣1的第一种提取方法
步骤201、准确称量1g步骤107中得到的残渣1装入50mL离心管中,然后加入50mL次氯酸钠,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;
步骤202、将步骤201中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液5,向离心管中的固体残渣加入50mL的1mol/L醋酸铵溶液,拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;
步骤203、将步骤202中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,然后将离心管中的上清液转移至50mL容量瓶中,得到溶液6,将离心管中的固体残渣在40℃条件下干燥12h,收集干燥后的粉末得到残渣2,残渣2的质量记为M2;
步骤三、残渣1的第二种提取方法
步骤301、准确称量1g步骤107中得到的残渣1装入50mL离心管中,然后加入20mL的5mol/L盐酸溶液,再置于干燥箱中,在75℃条件下反应6h,同时使离心管内的液体蒸干;
步骤302、向步骤301中反应后的离心管中加入20mL质量分数为40%的氢氟酸溶液,然后置于干燥箱中,在75℃条件下反应6h,同时使离心管内的液体蒸干;
步骤303、向步骤302中反应后的离心管中加入20mL的5mol/L盐酸溶液,然后置于干燥箱中,在75℃条件下反应6h,同时使离心管内的液体蒸干;
步骤304、向步骤303中反应后的离心管中加入20mL质量分数为40%的氢氟酸溶液,然后置于干燥箱中,在75℃条件下反应6h,同时使离心管内的液体蒸干;
步骤305、向步骤304中反应后的离心管中加入50mL的1mol/L醋酸铵溶液,然后拧紧离心管盖并摇匀离心管,再放置于水浴振荡器中在室温条件下振荡24h;
步骤306、将步骤305中经振荡后的离心管置于离心机中在5000r/min的转速下离心10min,将离心管中的上清液转移至50mL容量瓶中,得到溶液7,将离心管中的固体残渣在40℃条件下干燥12h,收集干燥后的粉末得到残渣3,残渣3的质量记为M3;
步骤四、数据测定
步骤401、采用电感耦合等离子体质谱法ICP-MS对步骤一中得到的溶液1、溶液2、溶液3和溶液4、步骤二中得到的溶液5和溶液6、步骤三中得到的溶液7进行微量元素浓度测定,得到数据1,单位为μg/mL;
步骤402、将步骤一中得到的残渣1、步骤二中得到的残渣2和步骤三中得到的残渣3分别进行湿法消解,得到各残渣...
【专利技术属性】
技术研发人员:张卫国,车晓阳,谢晓深,滕金祥,
申请(专利权)人:西安科技大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。