一种基于卷积神经网络的电力操作票文字识别方法技术

技术编号:24458503 阅读:48 留言:0更新日期:2020-06-10 16:16
本发明专利技术公开了一种基于卷积神经网络的电力操作票文字识别方法,涉及一种文字识别方法。目前电力操作票的文字识别不清楚。本发明专利技术包括步骤:构建仅具有3层卷积层,无池化层,无全连接层的卷积神经网络模型,训练得到非线性映射函数,提升图像的峰值信噪比;采用笔迹特征计算方法,分别获得电力操作票图像文字的假想笔画特征、路径签名特征和8方向特征;构建具有6层卷积层、5层池化层和1层全连接层的集成卷积神经网络模型,结合假想笔画特征、路径签名特征和8方向特征,训练得到文字识别模型;本技术方案利用卷积神经网络优越的空间特征学习能力,使用基于卷积神经网络的图像增强方法和文字识别方法,提高了电力操作票图像文字识别的准确度。

A text recognition method of power operation ticket based on convolutional neural network

【技术实现步骤摘要】
一种基于卷积神经网络的电力操作票文字识别方法
本专利技术涉及一种文字识别方法,尤其涉及一种基于卷积神经网络的电力操作票文字识别方法。
技术介绍
传统基于卷积神经网络的文字识别方法直接使用CNN方法训练手写汉字图片样本集,进而得到文字分类模型。此类方法仅使用CNN方法学习图像空间特征信息,训练高效、设计简单。但是,CNN方法在训练的过程中样本有限,无法学习所有可能存在的手写字体特征,其网络结构简单,图像表示能力有限,训练易过拟合。此类方法的识别性能有待进一步提高。为进一步提高文字识别的准确度,目前也出现了基于改进卷积神经网络的文字识别方法,使用图像变形网络GTN、仿射变形AD、弹性变形ED等文字变形方法丰富手写字体样本集,克服样本局限性;使用分数池化方法FMP、训练方法DropSample、松弛卷积神经网络R-CNN等方法优化卷积神经网络性能,克服训练过拟合、空间特征表达简单等问题。此类方法仅考虑样本集扩增、网络结构优化等方面,忽略了手写字体更深层次、细粒度的笔迹特征,如笔迹方向变化等,使得电力操作票图像文字识别的准确度低。...

【技术保护点】
1.一种基于卷积神经网络的电力操作票文字识别方法,其特征在于包括以下步骤:/n1)获取样本图像,得到训练集;/n2)构建仅具有3层卷积层,无池化层,无全连接层的卷积神经网络模型C

【技术特征摘要】
1.一种基于卷积神经网络的电力操作票文字识别方法,其特征在于包括以下步骤:
1)获取样本图像,得到训练集;
2)构建仅具有3层卷积层,无池化层,无全连接层的卷积神经网络模型C0;
3)定义C0的损失函数;
4)训练得到非线性映射函数Fλ(p),遍历训练集c中所有样本图像,训练输出图像增强计算函数,即非线性映射函数Fλ(p);
5)基于非线性映射函数Fλ(p),计算输出图像p的高峰值信噪比图像;
6)使用笔迹特征计算方法,计算高峰值信噪比图像的假想笔画特征、路径签名特征与8方向特征;
7)构建具有6层卷积层、5层池化层和1层全连接层的集成卷积神经网络模型C1;
8)遍历训练集中所有样本图像,结合假想笔画特征、路径签名特征与8个方向特征,训练得到电力操作票文字识别模型;
9)获取需要识别的电力操作票,通过电力操作票文字识别模型进行文字识别。


2.根据权利要求1所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤1)中,针对样本图像pi(pi∈c,1≤i≤N)得到训练集,其中N是训练集c包含的样本图像总数,获取pi的M×M数值矩阵Ai,及其对应的清晰图像数值矩阵Bi。


3.根据权利要求2所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤2)中构建三层卷积神经网络模型C0,仅含卷积层,选择激活函数ReLU,步长设置为1,不对卷积运算填充0,网络结构为:





4.根据权利要求3所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤3)中定义损失函数,损失函数目的是获得最小F范数,计算公式如下:



其中λ={Wj,bj};其中为卷积网络第j层的卷积矩阵,bj为偏差值,nj为卷积网络第j层的卷积核个数。


5.根据权利要求4所述的一种基于卷积神经网络的电力操作票文字识别方法,其特征在于:在步骤5)中使用非线性映射函数Fλ(p),计算...

【专利技术属性】
技术研发人员:罗麟位一鸣苗晓君张引贤熊安
申请(专利权)人:国网浙江省电力有限公司舟山供电公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1