一种基于对抗训练与关键路径提取的图像隐写分析方法技术

技术编号:24355390 阅读:101 留言:0更新日期:2020-06-03 02:27
本发明专利技术公开了一种基于对抗训练与关键路径提取的图像隐写分析方法,包括:对于待检测图像,分别输入至经过对抗训练的隐写分析模块、以及基于关键路径提取的隐写分析模块;所述待检测图像包括:非隐写图像、传统隐写图像和对抗嵌入隐写图像,其中传统隐写图像和对抗嵌入隐写图像都属于隐写图像的类别;获得两个模块各自输出的待检测图像为隐写图像的概率,再结合两个模块的权重,采用加权融合的方式,获得最终待检测图像为隐写图像的概率。该方法可以检测经过对抗嵌入生成的隐写图像,同时在一定程度上权衡了对抗训练带来的传统隐写图像和非隐写图像准确率下降问题。

An image steganalysis method based on confrontation training and key path extraction

【技术实现步骤摘要】
一种基于对抗训练与关键路径提取的图像隐写分析方法
本专利技术涉及图像隐写分析
,尤其涉及一种基于对抗训练与关键路径提取的图像隐写分析方法。
技术介绍
作为信息隐藏的常见手段,数字图像隐写在为人们提供一种更加隐蔽通信方式的同时,也为怀有不当企图的个人和组织开展一系列危害国家、社会安全的活动提供了更可靠的联系方式。近年来,随着人工神经网络在图像分类等任务上的成功应用,有许多学者把卷积神经网络引入隐写分析领域,并在主流隐写方法上实现了不错的检测效果。在这种背景下,为了提高隐写方法的抗分析性,一些工作开始尝试将生成对抗扰动的方法应用到隐写术的设计,这一类方法根据现有隐写分析网络的梯度更新嵌入成本函数,然后在新的嵌入成本函数上嵌入秘密消息。这种经过对抗嵌入的隐写图像很难被现有分析网络检测到,目前已有学者提出采用对抗训练的方式解决这一问题,但对抗训练也使得传统隐写图像和非隐写图像的分类精度下降。
技术实现思路
本专利技术的目的是提供一种基于对抗训练与关键路径提取的图像隐写分析方法,能够检测对抗嵌入隐写图像,同时也在一定程度本文档来自技高网...

【技术保护点】
1.一种基于对抗训练与关键路径提取的图像隐写分析方法,其特征在于,包括:/n对于待检测图像,分别输入至经过对抗训练的隐写分析模块、以及基于关键路径提取的隐写分析模块;所述待检测图像包括:非隐写图像、传统隐写图像和对抗嵌入隐写图像,其中传统隐写图像和对抗嵌入隐写图像都属于隐写图像的类别;/n获得两个模块各自输出的待检测图像为隐写图像的概率,再结合两个模块的权重,采用加权融合的方式,作为最终待检测图像为隐写图像的概率。/n

【技术特征摘要】
1.一种基于对抗训练与关键路径提取的图像隐写分析方法,其特征在于,包括:
对于待检测图像,分别输入至经过对抗训练的隐写分析模块、以及基于关键路径提取的隐写分析模块;所述待检测图像包括:非隐写图像、传统隐写图像和对抗嵌入隐写图像,其中传统隐写图像和对抗嵌入隐写图像都属于隐写图像的类别;
获得两个模块各自输出的待检测图像为隐写图像的概率,再结合两个模块的权重,采用加权融合的方式,作为最终待检测图像为隐写图像的概率。


2.根据权利要求1所述的一种基于对抗训练与关键路径提取的图像隐写分析方法,其特征在于,经过对抗训练的隐写分析模块为经过对抗训练的隐写分析网络,隐写分析网络中包含四种类型的卷积层,分别记为T1~T4;图像输入至隐写分析模块后依次经T1类型的卷积层、T2类型的卷积层输入至T3类型的卷积层,再依次经过T2类型的卷积层、T3类型的卷积层输入至T4类型的卷积层,最终通过空间金字塔池化层输入至全连接层并通过Softmax层,得到图像为隐写图像的概率;
训练时的损失函数为:



其中,α是权重系数,L是交叉熵损失函数,x是非隐写图像或传统隐写图像,x'是经过对抗嵌入隐写的图像,θ为待训练的参数,y是图像分类的标签。


3.根据权利要求2所述的一种基于对抗训练与关键路径提取的图像隐写分析方法,其特征在于,四种类型的卷积层的结构分别为:
T1类型的卷积层包括:依次连接的卷积单元、批归一化层与ReLU激活函数;
T2类型的卷积层包括:依次连接的T1类型的卷积层、卷积单元及批归一化层;同时,T1类型的卷积层的输入还与批归一化层的输出连接;
T3类型的卷积层包括:依次连接的T1类型的卷积层、卷积单元、批归一化层及平均池化层;同时,T1类型的卷积层的输入还依次经过另外的卷积单元与批归一化层连接平均池化层的输出;
T4类型的卷积层包括:依次连接的T1类型的卷积层、卷积单元及批归一化层。


4.根据权利要求1或2或3所述的一种基于对抗训练与关键路径提取的图像隐写分析方法,其特征在于,
所述基于关键路径提取的隐写分析模块中包含一个未经过对抗训练的隐写分析网络,待检测图像经过隐写分析网络;如果隐写分析网络判断待检测图像为隐写图像,则直接作为基于关键路径提取的隐写分析模块的检测结果;否则,再利用隐写分析网络通过基于关键路径提取的隐写分析方法对待检测图像进行分析,获得相应的检测结果;
当检测结果表明待检测图像为隐写图像时,基于关键路径提取的隐写分析模块的输出为1;否则输出为0。


5.根据权利要求4所述的一种基于对抗训练与关键路径提取的图像隐写分析方法,其特征在于,在训练过程中,提取关键路径的流程包括:
步骤1、设隐写分析网络的权重为W,神经元的激活值为A,对于一...

【专利技术属性】
技术研发人员:张勇东朱佳琪谢洪涛邓旭冉
申请(专利权)人:北京中科研究院中国科学技术大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1