当前位置: 首页 > 专利查询>天津大学专利>正文

基于AdaBoost-ESN算法的光纤传感振动信号模式识别方法技术

技术编号:24331748 阅读:64 留言:0更新日期:2020-05-29 19:56
本发明专利技术涉及一种基于AdaBoost‑ESN算法的光纤传感振动信号模式识别方法,包括如下步骤:采集振动信号构建数据集。构建AdaBoost‑ESN算法的模式识别网络:对多种已知事件的振动信号进行分类,首先使用回声状态网络构建ESN基础分类器,经过对样本训练识别得到基础分类结果,然后采用AdaBoost迭代框架计算ESN基础分类器分类错误样本,提高分类错误样本的权值,构建下一个ESN基础分类器,多次迭代后集中输出最终强分类器。

Pattern recognition method of vibration signal of optical fiber sensor based on AdaBoost ESN algorithm

【技术实现步骤摘要】
基于AdaBoost-ESN算法的光纤传感振动信号模式识别方法
本专利技术涉及光纤传感振动信号识别领域,具体指一种基于AdaBoost-ESN算法的光纤传感振动信号事件分类识别方法。技术背景近年来,光纤传感系统因其灵敏性高和精度高等优点,被广泛应用在场景振动信号的检测和定位中,如石油管道的振动源,周界安防的不良入侵等事件的检测和有效预警。光纤传感预警系统OFPS可以实时监测输气管道及其周围环境状况,光纤围栏振动情况。安全检测的重点是对不同类型的振动信号进行精确、高效、实时的检测和识别,并根据识别结果对不同类型的振动信号采取相应的措施。因此,振动信号识别方法越来越受到人们重视。目前针对光纤振动信号模式识别方法主要分为两大类。一类为特征提取+分类器两级模式识别方法,通过对采集的振动信号在时域、频域、时频域提取振动信号的特征,如短时能量法、短时过电平率、峰值、波形因子、小波包分解、经验模态分解EMD、希尔伯特变换、Mel倒谱系数等方法提取振动信号特征,构成时域、频域或复合特征向量,送入分类器进行训练,采用的分类算法如支持向量机SVM、卷积本文档来自技高网...

【技术保护点】
1.一种基于AdaBoost-ESN算法的光纤传感振动信号模式识别方法,包括如下步骤:/n第一步,采集振动信号构建数据集:搭建光纤传感系统,设定合理采样率,采集多种已知事件的振动信号,并对事件类型打上标签,将振动信号作归一化处理,作为原始数据集。/n第二步,构建AdaBoost-ESN算法的模式识别网络:对多种已知事件的振动信号进行分类,首先使用回声状态网络构建ESN基础分类器,经过对样本训练识别得到基础分类结果,然后采用AdaBoost迭代框架计算ESN基础分类器分类错误样本,提高分类错误样本的权值,构建下一个ESN基础分类器,多次迭代后集中输出最终强分类器。/n第三步,利用已经训练好的模式...

【技术特征摘要】
1.一种基于AdaBoost-ESN算法的光纤传感振动信号模式识别方法,包括如下步骤:
第一步,采集振动信号构建数据集:搭建光纤传感系统,设定合理采样率,采集多种已知事件的振动信号,并对事件类型打上标签,将振动信号作归一化处理,作为原始数据集。
第二步,构建AdaBoost-ESN算法的模式识别网络:对多种已知事件的振动信号进行分类,首先使用回声状态网络构建ESN基础分类器,经过对样本训练识别得到基础分类结果,然后采用AdaBoost迭代框架计算ESN基础分类器分类错误样本,提高分类错误样本的权值,构建下一个ESN基础分类器,多次迭代后集中输出最终强分类器。
第三步,利用已经训练好的模式识别网络对光纤传感振动信号进行模式识别。

【专利技术属性】
技术研发人员:吕辰刚樊丽会马敬敬霍紫强
申请(专利权)人:天津大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1