【技术实现步骤摘要】
从机载激光雷达点云中提取建筑物屋顶点的方法和系统
本专利技术属于机载激光雷达点云数据处理
,具体涉及一种从机载激光雷达点云中提取落在建筑物屋顶上的点的方法和系统。
技术介绍
机载LiDAR(LightDetectionAndRanging,激光雷达)是当前测绘领域效率最高、发展最快的大面积测绘手段之一。通过使用激光器发射和接收高能激光脉冲来测距,GNSS(GlobalNavigationSatelliteSystem,全球导航卫星系统)接收机给出激光器实时位置,INS(InertialNavigationSystem,惯性导航系统)给出激光器实时三维姿态,可利用向量公式和坐标转换计算出散射面的三维坐标。借助机械扫描装置,机载LiDAR可以实现大面积面状测量。目前,机载LiDAR的发射频率普遍高达数百KHZ以上乃至2000KHZ。这意味着,在不考虑多回波和无回波的情况下,一秒钟激光雷达可采集数十万乃至数百万点。因此,机载LiDAR可以在短时间内获得海量的点,称为点云。经过初步处理的机载LiDAR点云中,除点坐标外,还提供的点属性包括回波强度、第几次回波、数据采集时间等。但是,缺乏语义信息,不能给出激光脉冲打到的散射面的物理性质,不知道测量是地面、建筑物还是植被、鸟等。而在构建DEM(DigitalElevationModel,数字高程模型)时必须采用位于地面上的点,在构建三维建筑物模型时必须采用位于建筑物上的点,在进行森林制图时必须采用位于树木上的点。所以,对点云进行分类,确定点位于哪种基本地物类型上,是 ...
【技术保护点】
1.从机载激光雷达点云中提取建筑物屋顶点的方法,其特征在于,包括:/n(1)获取测区的机载激光雷达点云;采用三维欧几里得聚类对所获取的点云进行聚类;计算每个聚类内点云的平均离地高度,对平均离地高度大于高度阈值的每一个聚类按步骤2-4进行处理,提取建筑物屋顶点;/n(2)生成当前聚类C
【技术特征摘要】
1.从机载激光雷达点云中提取建筑物屋顶点的方法,其特征在于,包括:
(1)获取测区的机载激光雷达点云;采用三维欧几里得聚类对所获取的点云进行聚类;计算每个聚类内点云的平均离地高度,对平均离地高度大于高度阈值的每一个聚类按步骤2-4进行处理,提取建筑物屋顶点;
(2)生成当前聚类Cp对应的DSM,获取Cp在DSM中有效像素的数目Nvalid,计算Cp在XY平面的投影面积AC;
(3)如果聚类Cp投影面积AC大于等于面积阈值,计算DSM中拉普拉斯算子Lp小于平坦度阈值LT的像素占有效像素总数Nvalid的比值PLaplacian,如果所述比值大于平顶比例阈值PLaplacian_T,则将当前聚类Cp中的点全部分为建筑物屋顶点;
(4)如果聚类投影面积AC小于面积阈值,按如下步骤进行判断:
(4.1)平移当前聚类Cp得到Ctmp,Ctmp的重心在坐标原点;初始化当前采样次数NS=0;初始化Ctmp中所有点的状态为未抽取,清空有效模型序列和最优模型序列;
(4.2)如果当前采样次数NS达到最大采样次数NS_T,跳转至步骤4.5;
从Ctmp中随机抽取状态为未抽取的点p0,将p0的状态修改为已抽取,寻找Ctmp内距离p0最近的三个邻域点p1、p2、p3;如果p1、p2、p3距p0的距离都足够小,且四点能够近似用平面拟合,计算拟合平面Pfit;否则当前采样次数NS加一,重新执行步骤4.2;
(4.3)计算Ctmp中每个点到平面Pfit的距离;将所述距离小于平坦度阈值LT的点组成内点集合Cinlier;如果集合Cinlier中点数小于聚类最小点数阈值,当前采样次数NS加一,重新执行步骤4.2;否则对集合Cinlier再次进行三维欧几里得聚类;
(4.4)如果步骤4.3只得到一个聚类,将平面Pfit加入有效模型序列;
当前采样次数NS加一,重新执行步骤4.2;
(4.5)对有效模型序列进行遍历,寻找内点数目最多的有效模型作为最优模型,加入最优模型序列;从Ctmp中移除最优模型所对应的内点集合中的点,如果剩余点数大于聚类最小点数阈值,则初始化当前采样次数NS=0;初始化Ctmp中所有点的状态为未抽取,清空有效模型序列和最优模型序列,跳转至步骤4.2;
(4.6)计算Cp内的每个点与最优模型序列中平面的最小距离dmin,将dmin小于平坦度阈值LT的点组成集合Cinlier_all;如果Cinlier_all的点数占Cp中点数的比例大于阈值Pinlier_all_T,则将Cinlier_all中的点分为建筑物屋顶点。
2.根据权利要求1所述的提取建筑物屋顶点的方法,其特征在于,步骤(1)中所述三维欧几里得聚类的参数设置为:
搜索半径R的范围为(Rmin,Rmax),其中D是激光脉冲脚点的密度,Rmax为相邻建筑物之间的最小距离;
聚类最小点数阈值Nmin=AminD-Q
聚类最大点数阈值Nmax=AmaxD+Q
其中Q为误差调节常数,Amin为建筑物屋顶最小面积,Amax为建筑物屋顶最大面积。
3.根据权利要求1所述的提取建筑物屋顶点的方法,其特征在于,步骤(1)中计算聚类内点云的平均离地高度,包括:
获取聚类中每个点的地面高度:第n个点的坐标为(Xn,Yn,Hn),对应的地面高度HTn为XY平面上距离(Xn,Yn)最近的地面点的高程;
计算聚类中每个点的离地高度:ΔHn=Hn-HTn;
聚类内点云的平均离地高度:
N为聚类内点的总数。
4.根据权利要求1所述的提取建筑物屋顶点的方法,其特征在于,所述步骤(2)具体包括:
(2.1)计算Cp中点的最小X坐标Xmin、最大X坐标Xmax、最小Y坐标Ymin、最大Y坐标Ymax;将以(Xmin,Ymin)、(Xmax,Ymax)为对角顶点的矩形区域划分为Nrow行、Ncol列、格网大小为R的栅格,其中:
Nrow=int(Ymax-Ymin)/R+1
Ncol=int(Xmax-Xmin)/R+1
R为三维欧几里得聚类的搜索半径,int(·)为取整函数;
(2.2)将Cp中的点分配到栅格中的像素,得到当前聚类Cp对应的DSM;
第n个点映射到像素(i,j)中,其中(Xn,Yn,Hn)为第n个点的坐标;
(2.3)对栅格内的像素进行遍历;如果一个像素有点落入,则取落入点的高度指标作为DSM的值,该像素为有效像素,无点落入的像素的DSM值设为Hinvalid;所述高度指标为:落入点的高程最小值,或落入点的高程最大值,或落入点的高程平均值;
(2.4)对DSM逐像素进行遍历,统计有效像素的数目Nvalid;Cp在XY平面的投影面积AC为:Ac=NvalidR2。
5.根据权利要求4所述的提取建筑物屋顶点的方法,其特征在于,所述步骤(3)DSM在像素(i,j)处的拉普拉斯算子Lp(i,j)为:
6.从机载激光雷达点云中提取建筑物屋顶点的系统,其特征在于,包括:
机载激光雷达点云聚类模块,用于获取测区的机载激光雷达点云;采用三维欧几里得聚类对所获取的点云进行聚类;计算每个聚类内点云的平均离地高度,获取平均离地高度大于高度阈值的聚类;
D...
【专利技术属性】
技术研发人员:程晓光,
申请(专利权)人:飞燕航空遥感技术有限公司,
类型:发明
国别省市:湖北;42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。