基于机器学习的桩-土相互作用预测分析方法技术

技术编号:24331603 阅读:41 留言:0更新日期:2020-05-29 19:51
本发明专利技术公开了一种基于机器学习的桩‑土相互作用预测分析方法,属于地基基础工程技术领域。其包括以下步骤:采用拉丁超立方抽样方法建立桩‑土变量的参数样本,采用数值模拟方法对参数样本建模,得到参数样本对应桩体的受力变形值,通过Lasso方法对输入变量及需求变量进行敏感性分析,降低输入变量维度;将参数样本划分为数量均等的K份进行交叉验证,建立基于L‑M算法的BP神经网络模型,隐藏层神经元个数定义在一定范围内循环遍历运算,通过对比训练误差确定最佳隐藏层神经元个数,使用训练后的神经网络模型,预测桩体的受力变形。本发明专利技术具有分析流程清晰、可靠性强、效率高的优点,为桩基的设计和应用提供理论依据。

Prediction and analysis method of pile-soil interaction based on machine learning

【技术实现步骤摘要】
基于机器学习的桩-土相互作用预测分析方法
本专利技术涉及一种基于机器学习的桩-土相互作用预测分析方法,属于地基基础工程

技术介绍
桩基础在各种工程建设中有十分广泛的应用,是不良地基中最常用的处理方法。随着桩基技术的发展,一些新型桩基技术出现了,比如螺旋钢桩、复合土工材料封装散体桩等,这些桩的设计影响因素众多。了解其受力变形特性,对工程的安全性、稳定性和经济性有着重要的意义。桩基的承载力是桩与土共同作用的结果,传统的现场载荷试验是最常用的分析方法,通过分析单桩承载力,了解地基的力学性能,为工程前期设计和后期验收提供依据,但现场荷载试验的成本高昂,要消耗巨大的人力物力资源。上述这些新型的桩体,由于涉及多种材料或本身桩体结构呈现强烈的几何非线性,空间结构复杂,其在荷载下的桩土相互作用传力非常复杂,受力变形机理还不甚清楚,常采用半经验的理论计算,导致计算结果可靠性不高,常与现场试验结果产生较大的出入,对地基的变形与破坏情况的分析预估不准确,将导致工程存在安全隐患或工程造价大幅提高。目前,经过现场验证后的数值模拟方法计算精度优于现有的半经验理论计算,但采用三维的精细数值模拟仍需耗费大量的时间。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种快速、准确的基于机器学习的桩-土相互作用预测分析方法,探明上述影响因素复杂的桩体的受力变形特性,解决传统分析方法效率低且费用高昂的问题,为桩体的设计和应用提供理论依据。本专利技术的目的是通过以下技术方案来实现的:基于机器学习的桩-土相互作用预测分析方法,包括以下步骤:采用拉丁超立方抽样方法建立桩-土变量的参数样本,所述参数样本包括土体变量和桩体变量;将参数样本划分为数量均等的K份,所述K为大于等于2的正整数;采用数值模拟方法对参数样本建模,得到参数样本对应桩体的受力变形值,所述受力变形值包括沿桩体长度方向的弯矩分布、桩体沉降值、桩体极限承载力;通过Lasso方法对输入变量及需求变量进行敏感性分析,所述输入变量为土体变量和桩体变量,所述需求变量为受力变形值;随机取一份参数样本作为测试集,其余K-1份参数样本作为训练集进行交叉验证,降低输入变量维度;建立基于L-M算法的BP神经网络模型,所述神经网络模型包括输入层、隐藏层和输出层,所述输入层的个数为降低维度后输入变量的个数,所述输出层为所需求的受力变形值;对隐藏层神经元个数的范围进行定义,并对其进行循环遍历训练,通过对比训练误差确定最佳隐藏层神经元个数;使用训练后的神经网络模型,对新的变量参数进行分析,预测桩体的受力变形。进一步的,所述土体变量包括重度、孔隙率、不均匀系数、粘聚力、渗透系数、压缩模量和比重等相关参数;所述桩体变量包括桩-土摩擦角、刚度、长径比、螺距、叶片钢盘厚度、土工材料刚度、桩体填料摩擦角和桩长等相关参数。进一步的,所述对参数样本建模包括基于摩尔库伦本构模型或剑桥模型的桩周土体和基于弹塑性理论的桩体。进一步的,所述Lasso方法通过交叉验证确定输入参数的最佳权重,其惩罚函数公式如下:,式中,n为样本个数,m为所有输入变量个数,yi表示第i个样本的需求变量值,xij为第i个样本中第j个输入变量的值,βj表示第j个输入变量的权重值,β0表示初始系数权重值,通常β0到βm的初始取值为0~1之间的随机数;λ为正则化参数,其值越大,降维能力越强,λ初始值取0.01。β值通过迭代进行更新,λ值在0.01附近调参,在找出最优解后,将对应β=0的输入变量剔除从而达到降维的目的。进一步的,所述惩罚函数采用最小角回归法求解。进一步的,所述降低输入变量维度,选择通过Lasso方法验证后权重不为0的输入变量。进一步的,所述神经网络模型的权重更新采用L-M算法、激活函数采用Sigmoid。进一步的,所述循环遍历训练包含不同隐藏层神经元个数的神经网络,通过评定神经网络预测误差确定最佳隐藏层神经元个数。进一步的,所述神经网络预测误差采用均方误差评定。本专利技术的有益效果是:1)通过抽样建模,建立分析桩体受力变形特性的神经网络模型,分析方法流程清晰、可靠性强,有利于快速、准确地对桩-土相互作用情况进行分析,解决了传统分析方法效率低且成本高昂的问题。2)本专利技术选择的训练样本具有代表性,使训练出的模型更具普适性。同时,通过降低输入变量维度,有利于加速桩-土神经网络训练速度,提高分析效率。3)采用L-M算法更新权重,有利于避免桩-土神经网络模型陷入局部最小误差,进而有利于快速、准确预测桩体的受力变形特性,为桩基的设计和应用提供理论依据。附图说明图1为本专利技术基于机器学习的桩-土相互作用预测分析方法的流程示意图。图2为本专利技术实施例预测分析方法流程示意图。图3为本专利技术实施例预测分析方法的参数筛选和神经网络结构图。具体实施方式下面将结合实施例,对本专利技术的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。本专利技术中在包括下述说明在内的各部分中所提供的技术方案和技术特征,在不冲突的情况下,这些技术方案和技术特征可以相互组合。基于本专利技术中的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本专利技术保护的范围。如图2所示,本专利技术提供一种技术方案:基于机器学习的桩-土相互作用预测分析方法,包括以下步骤:S1、采用拉丁超立方抽样方法建立桩-土变量的参数样本,使样本更具有代表性和随机性,这里的参数样本包括土体变量和桩体变量。本实施例的土体变量包括重度、孔隙率、不均匀系数、粘聚力和比重,桩体变量包括桩-土摩擦角、刚度、长径比和桩长。采用拉丁超立方抽样(LHS)时,将每个桩-土变量在其合理范围内分成互不重叠的n个区间,使得每个区间有相同的改良,在每一个变量中的每一个区间随机抽取一个点,再从每一维里随机抽取上一步中抽取的点,将其组成向量,共生成n个样本向量。将参数样本划分为数量均等的K份,这里的K值取10,即n个样本被划分为10份。S2、采用数值模拟方法对参数样本建模,具体采用有限元分析软件对步骤S1中的n个样本进行有限元建模,本实施例的土体采用摩尔库伦模型,桩体采用弹性模型。计算需求变量,即参数样本对应桩体的受力变形值,受力变形值包括沿桩体长度方向的弯矩分布、桩体沉降值、桩体极限承载力,下面以需求变量为桩体沉降值为例进行说明。S3、通过Lasso方法对输入变量及需求变量进行敏感性分析,这里的输入变量为参数样本中的土体变量和桩体变量,需求变量为桩体沉降值,随机从十份参数样本中取一份作为测试集,其余九份作为训练集进行K折交叉验证。将数据集导入Lasso回归模型进行参数筛选,其惩罚函数公式如下:,式中,n为样本个数,m为所有输入变量个数,yi表示第i个样本的需求变量值,xij为第i个样本中第j个输入变量的值,βj表示第j个输入变量的权重值,β0表示初始系数权重值,通常β0到βm的初始取值为0~本文档来自技高网...

【技术保护点】
1.基于机器学习的桩-土相互作用预测分析方法,其特征在于:包括以下步骤:/n采用拉丁超立方抽样方法建立桩-土变量的参数样本,所述参数样本包括土体变量和桩体变量;将参数样本划分为数量均等的K份,所述K为大于等于2的正整数;/n采用数值模拟方法对参数样本建模,得到参数样本对应桩体的受力变形值,所述受力变形值包括沿桩体长度方向的弯矩分布、桩体沉降值、桩体极限承载力;/n通过Lasso方法对输入变量及需求变量进行敏感性分析,所述输入变量为土体变量和桩体变量,所述需求变量为受力变形值;随机取一份参数样本作为测试集,其余K-1份参数样本作为训练集进行交叉验证,降低输入变量维度;/n建立基于L-M算法的BP神经网络模型,所述神经网络模型包括输入层、隐藏层和输出层,所述输入层的个数为降低维度后输入变量的个数,所述输出层为所需求的受力变形值;对隐藏层神经元个数的范围进行定义,并对其进行循环遍历训练,通过对比训练误差确定最佳隐藏层神经元个数;/n使用训练后的神经网络模型,对新的变量参数进行分析,预测桩体的受力变形。/n

【技术特征摘要】
1.基于机器学习的桩-土相互作用预测分析方法,其特征在于:包括以下步骤:
采用拉丁超立方抽样方法建立桩-土变量的参数样本,所述参数样本包括土体变量和桩体变量;将参数样本划分为数量均等的K份,所述K为大于等于2的正整数;
采用数值模拟方法对参数样本建模,得到参数样本对应桩体的受力变形值,所述受力变形值包括沿桩体长度方向的弯矩分布、桩体沉降值、桩体极限承载力;
通过Lasso方法对输入变量及需求变量进行敏感性分析,所述输入变量为土体变量和桩体变量,所述需求变量为受力变形值;随机取一份参数样本作为测试集,其余K-1份参数样本作为训练集进行交叉验证,降低输入变量维度;
建立基于L-M算法的BP神经网络模型,所述神经网络模型包括输入层、隐藏层和输出层,所述输入层的个数为降低维度后输入变量的个数,所述输出层为所需求的受力变形值;对隐藏层神经元个数的范围进行定义,并对其进行循环遍历训练,通过对比训练误差确定最佳隐藏层神经元个数;
使用训练后的神经网络模型,对新的变量参数进行分析,预测桩体的受力变形。


2.根据权利要求1所述的基于机器学习的桩-土相互作用预测分析方法,其特征在于:所述土体变量包括重度、孔隙率、不均匀系数、粘聚力、渗透系数、压缩模量和比重;所述桩体变量包括桩-土摩擦角、刚度、长径比、螺距、叶片钢盘厚度、土工材料刚度、桩体填料摩擦角和桩长。


3.根据权利要求1所述的基于机器学习的桩-土相互作用预测分析方法,其特征在于:所述对参数样本建模包括基于摩...

【专利技术属性】
技术研发人员:刘凯文邱睿哲何川倪芃芃梅国雄陈德苏谦黄俊杰越斐周鹏飞熊志鹏李源港邵康牛妤冰
申请(专利权)人:西南交通大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1