一种电力通信网络智能运维系统的故障诊断方法技术方案

技术编号:24290110 阅读:123 留言:0更新日期:2020-05-26 20:15
本发明专利技术涉及电力通信网络领域,更具体地,涉及一种电力通信网络智能运维系统的故障诊断方法,该方法首先从配用电通信网络中采集到的智能运维系统实时状况信息中抽取反映系统底层运行状况的数据,用SOM网络进行一次初聚类,得到聚类个数和聚类中心,然后再使用K‑Means算法进行二次聚类,使聚类信息得到精化。本发明专利技术使用SOM神经网络和K‑Means算法结合的方法进行故障诊断,不仅解决了以往聚类算法在聚类时分群数目需人为给定的缺点,而且避免了复杂的计算过程,具有简单、速度快的优点,同时使得聚类信息更加精确,对故障模式的处理能力更强,稳定性更高,提高了对故障诊断的精准度和系统的整体性能。

A fault diagnosis method for intelligent operation and maintenance system of power communication network

【技术实现步骤摘要】
一种电力通信网络智能运维系统的故障诊断方法
本专利技术涉及电力通信网络领域,更具体地,涉及一种电力通信网络智能运维系统的故障诊断方法。
技术介绍
随着智能电网研究与实践的推进,传统意义上的电网正逐步与信息通信系统、监测控制系统相互融合,电网设备的运维工作和电网运行安全连接更加紧密。随着全国各级电网的升级和改造,接入电力网络系统中的部门、设备也在逐步增加,负责电网设备运维的工作人员的任务量也在加大,难以兼顾设备运行数据的完整性分析和故障环节的处理。在一般的情况下,系统运维人员通过对现阶段监测到的数据指标与正常数据指标来进行比较,如果监测结果偏离正常数据指标,则就会被认为是发生故障,运维与维修人员到现场进行维护。但随着电力系统中设备数量增加,系统复杂度也随之增加的现状,难以通过监测得到导致问题的数据。根据上述的问题,开发了许多针对系统故障诊断的模型和方法,其中一种是在自组织映射网络(Self-organizingMaps,SOM网络)的基础上,结合误差逆向传播算法训练的多层前馈(backpropagation,BP)神经网络,实现故本文档来自技高网...

【技术保护点】
1.一种电力通信网络智能运维系统的故障诊断方法,其特征在于,包括以下步骤:/n步骤一:从配用电通信网络中采集到的智能运维系统实时状况信息中抽取反映系统底层运行状况的数据,进行数据预处理;/n步骤二:利用SOM网络对数据进行初聚类;/n步骤三:利用K-Means算法对SOM网络的输出结果进行二次聚类;/n步骤四:对系统运行状态的诊断。/n

【技术特征摘要】
1.一种电力通信网络智能运维系统的故障诊断方法,其特征在于,包括以下步骤:
步骤一:从配用电通信网络中采集到的智能运维系统实时状况信息中抽取反映系统底层运行状况的数据,进行数据预处理;
步骤二:利用SOM网络对数据进行初聚类;
步骤三:利用K-Means算法对SOM网络的输出结果进行二次聚类;
步骤四:对系统运行状态的诊断。


2.根据权利要求1所述的一种电力通信网络智能运维系统的故障诊断方法,其特征在于,在所述步骤一中,数据的预处理包括去除含有缺失值的数据记录。


3.根据权利要求1所述的一种电力通信网络智能运维系统的故障诊断方法,其特征在于,在所述步骤一中,数据包含三种信息,分别为时间信息、系统服务器相关信息和运行信息。


4.根据权利要求3所述的一种电力通信网络智能运维系统的故障诊断方法,其特征在于,时间信息包括采集时间;系统服务器相关信息包括服务器编号;运行信息包括服务器耗电量、内存使用大小、硬盘使用大小、CPU使用率、服务器温度、风扇转速以及应用进程使用情况。


5.根据权利要求4所述的一种电力通信网络智能运维系统的故障诊断方法,其特征在于,在步骤二利用SOM网络对数据进行初聚类具体步骤如下:
步骤S2.1:权值初始化,将SOM网络的连接权{wij}赋予[0,1]区间内的随机值,i=1,2,…,S,j=1,2,…,R,其中R为样本维数,S为输出神经元个数;确定学习率η(t)的初始值η(0)(0<η(t)<1);确定邻域Ng(t)的初始值Ng(0),Ng(t)的值表示在第t次学习过程中邻域中所包含的神经元的个数;确定总学习次数T,循环次数初始设定t=1;
步骤S2.2:对SOM网络进行循环的聚类训练;
步骤S2.3:循环结束后,样本的聚类根据输出节点的响应来完成;
步骤S2.4:将聚类数目N和聚类中心Z={Z1,Z2,…,ZN}输出。


6.根据权利要求5所述的一种电力通信网络智能运维系统的故障诊断方法,其特征在于,在所述步骤S2.2中,具体的流程为:
步骤S2.2.1:选取Q个服务器运行信息作为学习样本,任选其中一个样本提供给网络的输入层;样本k=1,2,…,Q;
步骤S2.2.2:计算权向量wi=(wi1,wi2,…,wiR)与输入模式之间的欧几里得距离di,并计算最小距离dg,确定获胜神经元g;di和dg的具体公式为:



式中,wij为权向量;为输入的样本数据;
dg=min[di],i=1,2,…,S
式中,di为权向量与输入的样本数据之间的欧几里得距离;
步骤S2.2.3:对竞争层邻域Ng(t)内的所有神经元与输入层神经元之间的连接权wij进行修正,具体公式为:









式中,wij(t+1)为t+1时刻输入神经元i与输出神经元j之间的连接权;g为获胜神经元;Ng(t)为t时刻以获胜神经元g为中心的邻域范围;η(t)为学习率;...

【专利技术属性】
技术研发人员:莫穗江高国华李瑞德王锋张欣欣温志坤黄定威杨玺张欣汤铭华梁英杰廖振朝陈嘉俊李伟雄童捷张天乙
申请(专利权)人:广东电网有限责任公司广东电网有限责任公司江门供电局
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1