一种双环全谐振型软开关变换器制造技术

技术编号:24058617 阅读:35 留言:0更新日期:2020-05-07 17:04
本实用新型专利技术公开了一种双环全谐振型软开关变换器,双环,指主谐振LrLBCr称之LLC多谐振,辅助半桥谐振Lo(C3+C4)的LC单谐振,所述LLC主谐振电路由主谐振LB、Lr、Cr构成,全桥所有四只开关器件都并联电容器,实现全桥四个管的全部谐振。本实用新型专利技术变换器在同样的变压器、电感与电容谐振规格下,可以输出更大的功率,功率管实现零电压开通,零电流关断,电容C3、C4、C5、C6与功率管Q1、Q2、Q3、Q4分别并联,充分降低了dv/dt的电压变化率,效率提高且电磁辐射降低。

A double loop full resonant soft switching converter

【技术实现步骤摘要】
一种双环全谐振型软开关变换器
本技术涉及开关电源变换器
,特别是涉及一种双环全谐振型软开关变换器。
技术介绍
在功率电子学领域,将一种电能转换为另一种电能,如直流对直流,也可以交流对直流,直流对交流。这里指输入直流电压,转换成另一种直流电压值,提高开关频率来减小变压器的尺寸,而且,实现稳压功能,提高转换效率,设备小,成本低,小型轻便型化,也就是说提高了功率密度。如工频变压器,体积和重量十分大,而且输出电压随输入电压的高低变化而变化,频率越高,体积越小,重量越轻,电力电子技术革命,也是变换器技术的革命。在开关变换器中,设法使担任调整作用的功率管电流按照正弦波规律变化,开关管在电压为零时的开通与关断,电流在零时的开通与关断,这时的变换器效率达到最高的局限点,此时不能调节输出电压的高低变化,通过改变工作原理与结构,尽可能达到最低损耗的转换,更高效,更高频率的使用,可以让变压器做的更小,也由此提高了变换器的功率密度。应用软开关技术的变换器较传统硬开关的变换器具有变换效率高,电磁干扰小,而且能够提高功率密度,因而获得了广泛的应用。所占的比例也越来越高,研究与应用新的软开关技术已成为开关变换器领域的重点和主流。从变换器的发展史与里程碑上,最早的技术,也可以称之为一代技术,如图2的半桥与图3的全桥,为完全的硬开关,即高电压大电流的导通与关断,而且,每一只管还要如图示的RC吸收器,R存在比较大的损耗,转换效率低,开关频率低,设备大,成本高,属于低端低技术含量。第二代应当属于移相电路,或者有限双极性电路,也叫伪相移方式。如图4,移相型,晶体管Q1与晶体管Q2,晶体管Q3与晶体管Q4都是几乎全脉宽的移动角度,来形成占空比调制。因为始终满脉宽,关断开关管的电感励磁电流会产生另一只管的零电压导通,根本不需要RC吸收器,晶体管Q3、晶体管Q4是超前臂,实现ZVS(零压)导通,晶体管Q1、晶体管Q2滞后臂实现ZVS(零流)关断。晶体管Q3、晶体管Q4的超前臂并一小电容,可以减小大电流关断的损耗,但由于死区时间短,而且是固定,轻载空载的占比非常小,即导通时间十分短,电流十分小,不能对电容C3、电容C4的充满与放完电的过程,导通失去ZVS(零压),此电容会被管子吸收而产生损耗,使用的频率比硬开关高一些,但也不能更高许多。为了解决这一不足,采用伪相移即有限双极性电路,如晶体管Q1、晶体管Q2全脉宽固定导通时间,而晶体管Q3晶体管Q4采用可变脉宽PWM化,大电流下PWM高,死区时间短,但很短时间就能对电容C3、电容C4的充满电与放完电,而在轻载、空载的下,PWM低,晶体管Q3、晶体管Q4的导通时间非常短,但死区时间非常大,由于晶体管Q1、晶体管Q2的固定导通时间不变,始终在回路构成导通状态,而且变压器留一点气隙,让初级电感量减小一些,增大励磁电流,这样,由于有足够的时间对电容C3、电容C4的充放电,采用增大一些电容量,可更多地减小晶体管Q3、晶体管Q4的关断损耗。由于输出通过整流二极管之后串联L0的电感器,L0电感续流,导致二极管D1、二极管D2的硬转换过程,存在反向恢复时间,整流二极管的损耗比较大。故二代不论是移相电路还是有限双极性电路,称之边缘谐振型软开关,但实际上,还是显示硬开关特性。软的成分与效果相当有限。那么到了第三代LLC多谐振型软开关,如图5所示,由电感LB电感Lr电容Cr构成。当开关频率工作在谐振频率,即这时感抗Lr=容抗Cr,谐振的电抗值是零,正弦波电流状态如图6所示,ir是谐振电流,iLB是由LB电感产生的励磁电流。这个调输出电压大小与负载功率,靠的是改变频率而产生的电感分压数值,如电抗Xz=感抗XL-容抗频率提高,XL变大,Xc变小,Xz值增大,随着频率的提高,电感LB的值也同样变大,导致时间变短的励磁电流iLB变小,所以LB的值不宜大,宜小一些,一般LB=3Lr左右合适,随着负载功率的进一步减小,需要更高的频率,那么由于导通时间也同样减小,励磁电流也进一步减小,晶体管Q1晶体管Q2会失去零电压导通条件而进入容性开通,这一电容能量为Wc=2×1/2CU2f,f进一步升高,成比例性的增大Wc,故需要控制频率范围,如进入变频与变脉宽同时产生,直到最高频率如三倍谐振频率下的占空比为零了。或者另一种方式,就是形成间歇振荡,平均频率也受到限制,不会十分高。电感LB的感抗值也是随频率而改变,频率低时,输出功率大,但叠加的iLB电流也同样比较大,造成晶体管Q1晶体管Q2开关管的损耗与并联电感器的LB损耗还有谐振串联电感Lr的损耗都比较大,当输出电压与功率减小了,由于失去ZVS(零压)开通,容性吸收产生开关管损耗大,这损耗来自功率开关管的结电容与并联电容器的总和。那么也就是说存在一定的自相矛盾,频率低时,励磁电流叠加形成无转换功率的电流大损耗大,而频率高时,需要由1/2×2Cu2f的数值增大,但励磁电流却反而在减小,相反,故只有工作在谐振频率点上的效率最高,一旦偏离越大,无论更高频率,还是更低频率,转换效率都大大降低了。输出整流二极管不串联电感滤波,而是由电容直接滤波,属于零流通与断,损耗比较小。这种LLC多谐振变换器为第三代技术,效率与频率均高于二代的移相与有限双极性。第四代称之准谐振型软开关变换器,如图7所示电容C1+电容C2为谐振电容,以电容Cr代替。该电路的原理,最高频率设计在电感Lr与电容Cr的谐振频率,开关频率总是低于谐振频率或最高到谐振频率点上,设半周导通时间为Ton,采用固定脉宽变频率即PFM的模式,设谐振频率为fT,开关频率为fo,当fo为0.6fT~fT之间,满占空比,而低于0.6fT时,完全进入PFM化,由于二极管D1、二极管D2的钳位作用,回路电流总是工作在正弦波电流状态,即零电流导通与零电流关断,双零系统而称准字,叫准谐振型软开关,一旦工作频率不断降低,在0.6fT以下时,由于PFM化同样占空比出现(称PFM占空比),死区时间的存在,尽管零流导通与关断关系,但失去了零电压导通条件了,故结电容被开关管吸收而产生损耗,这个输出功率的值Pw=2×1/2CU2f,与f成比例关系,频率降低输出功率减小,故改变频率的范围十分大,如果为了限制频率范围,当导通周期小于谐振周期,进入大电流关断,失去零电流关断。还有一种变换器方式,如图9,采用两级方式,一级固定频率,设计在电感Lr电容Cr的谐振频率为开关频率。这一级是完全的正弦波电流的零流导通与关断,零电压的导通与关断,效率最高,HV+与HVo为调幅,其值大小决定了输出电压的高低,增加另一级Buck即降压电路,由电感L0,晶体管Q3,二极管D1构成,但晶体管Q3开关管却工作在高电压大电流的导通与关断,存在比较大的损耗。由于调幅电压HV+与HVo之间的转换效率最高,综合效率还是非常高的。这种方式也得到普通的实际应用,但如何提高动态响应速度,也是有讲究的电路原理与控制方式。
技术实现思路
为了克服现有技术的不足,本技术提供一种双环全谐振型软开关变换器,其将二、三四代各有所长的复合利用,产生了一个新的拓扑结构的电路原理本文档来自技高网
...

【技术保护点】
1.一种双环全谐振型软开关变换器,包括有限双极性的LLC全桥主谐振电路和LC辅助谐振电路,其特征在于,所述LLC全桥主谐振电路由主谐振电感LB、电感Lr、电容Cr构成,全桥所有四只开关器件都并联电容器,输入电压的正极连接电容C1的一端,电容C1的一端连接晶体管Q1的集电极,电容C1的另一端连接电容C2的一端,电容C2的一端连接电感L0的一端,电感L0的一端连接晶体管Q1的发射极,晶体管Q1的集电极连接电容C3的一端,电容C3的一端连接晶体管Q4的集电极,晶体管Q4的集电极连接电容C5的一端,晶体管Q1的发射极连接晶体管Q2的集电极,晶体管Q2的集电极连接电容C3的另一端,电容C3的另一端连接电容C4的一端,电容C4的一端连接电感LB的一端,电感LB和变压器B的输入端并联,电感LB的另一端连接电感Lr的一端,电感Lr的另一端连接电容Cr的一端,电容Cr的另一端连接晶体管Q4的发射极,晶体管Q4的发射极连接晶体管Q3的集电极,晶体管Q3的集电极连接电容C5的另一端,电容C5的另一端连接电容C6的一端,电容C6的一端连接晶体管Q3发射极,晶体管Q3的发射极连接电容C4的另一端,电容C4的另一端连接晶体管Q2的发射极,晶体管Q2的发射极连接电容C2的另一端,电容C2的另一端接地,变压器B输出端的中性线接极性电容E的负极,变压器B的双极性输出端分别接二极管D1和二极管D2的正极,二极管D1和二极管D2的负极与极性电容E的正极连接,极性电容E与负载并联。/n...

【技术特征摘要】
1.一种双环全谐振型软开关变换器,包括有限双极性的LLC全桥主谐振电路和LC辅助谐振电路,其特征在于,所述LLC全桥主谐振电路由主谐振电感LB、电感Lr、电容Cr构成,全桥所有四只开关器件都并联电容器,输入电压的正极连接电容C1的一端,电容C1的一端连接晶体管Q1的集电极,电容C1的另一端连接电容C2的一端,电容C2的一端连接电感L0的一端,电感L0的一端连接晶体管Q1的发射极,晶体管Q1的集电极连接电容C3的一端,电容C3的一端连接晶体管Q4的集电极,晶体管Q4的集电极连接电容C5的一端,晶体管Q1的发射极连接晶体管Q2的集电极,晶体管Q2的集电极连接电容C3的另一端,电容C3的另一端连接电容C4的一端,电容C4的一端连接电感LB的一端,电感LB和变压器B的输入端并联,电感LB的另一端连接电感Lr的一端,电感Lr的另一端连接电容Cr的一端,电容Cr的另一端连接晶体管Q4的发射极,晶体管Q4的发射极连接晶体管Q3的集电极,晶体管Q3的集电极连接电容C5的另一端,电容C5的另一端连接电容C6的一端,电容C6的一端连接晶体管Q3发射极,晶体管Q3的发射极连接电容C4的另一端,电容C4的另一端连接晶体管Q2的发射极,晶体管Q2的发射极连接电容C2的另一端,电容C2的另一端接地,变压器B输出端的中性线接极性电...

【专利技术属性】
技术研发人员:张亦星张益平李太兵张辰罗圣光
申请(专利权)人:深圳市新能力科技有限公司
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1