一种含纳米纤维素的可降解塑料母粒的制备方法技术

技术编号:24027462 阅读:40 留言:0更新日期:2020-05-06 23:51
本发明专利技术公开了一种制备含纳米纤维素的可降解塑料母粒的方法,涉及可降解塑料加工制备领域,具体而言,涉及一种纳米纤维素复合可降解塑料的母粒的制备方法。将可降解塑料颗粒与增塑剂在加热条件下搅拌混合均匀,加入一定量由机械法或化学法处理得到的纳米纤维素分散液,然后将混合物放在室温或加热条件下进行干燥,得到固含量可高达99%的含纳米纤维素的母粒。本发明专利技术方法操作步骤简单、不使用有毒溶剂、绿色环保,所得母粒具有增强作用,可添加到聚乳酸、聚己二酸‑对苯二甲酸丁二醇酯等可降解塑料中,以减少可降解塑料颗粒用量、降低生产成本。

A preparation method of degradable plastic masterbatch containing nano cellulose

【技术实现步骤摘要】
一种含纳米纤维素的可降解塑料母粒的制备方法
本专利技术涉及可降解塑料加工制备领域,具体而言,涉及一种纳米纤维素复合可降解塑料的母粒的制备方法。
技术介绍
塑料产品由于具有质轻、耐用、安全、成本低廉等特点而广泛用于包装、日用、建筑等领域。在带给人们方便的同时,塑料产品的缺点也逐渐被意识到,目前普通采用的石油基聚烯烃(聚乙烯PE、聚丙烯PP、聚氯乙烯PVC等)大部分无法被循环利用,而且在自然条件下降解时间非常长,因而会产生大量的垃圾,造成相当严重的“白色污染”。生物可降解塑料是指在自然条件下,通过自然界的某些微生物如细菌、真菌和藻类等作用而引发降解的塑料,包括微生物合成型生物降解塑料(如聚羟基脂肪酸类PHA、聚羟基丁酸酯PHB等)、化学合成型生物降解塑料(如聚乳酸PLA、聚己二酸-对苯二甲酸丁二醇酯PBAT,聚丁二酸丁二醇酯PBS、聚己内酯PCL等)和天然类生物降解塑料(淀粉、纤维素等)三大类。而目前合成型的生物降解塑料的价格普遍比较昂贵,即使是已经工业化生产的聚乳酸,价格也几乎是普通石油基聚乙烯的两倍,从而极大限制了其使用范围。将价格相对低廉的淀粉、木素、纤维素等天然材料与可降解塑料如PLA、PBAT等复合加工是降低可降解塑料生产成本的一种有效途径。宁平等用木薯淀粉、玉米淀粉来填充PBAT,发现淀粉用量为5~10份时,材料的综合力学性能得到较好改善;但当淀粉用量超过10份时,性能明显下降(宁平等,淀粉填充改性PBAT的结构与性能研究,化工新型材料,2010.7)。邹阳雪发现在PBAT/PES聚酯基体中,木素含量为5%时,可以在体系中均匀分散,材料的力学性能没有明显下降;而木素含量达到15%时,拉伸强度出现大幅降低(邹阳雪,木质素/PBAT/PES复合材料的制备及性能研究,西南科技大学硕士论文,2016)。李玲玉用淀粉和PLA混合、熔融制备3D打印材料,发现复合材料的力学性能随着淀粉比例的增加呈现明显的下降趋势,当淀粉用量为40%时,拉伸强度降幅达72~74%,冲击强度降幅达28%,弯曲强度降幅达30~34%(李玲玉,应用于3D打印的聚乳酸/淀粉复合材料的制备及表征,化工技术与开发,2018.7)。以往研究发现,淀粉、木素等在可降解塑料中只能少量添加,否则会导致复合材料力学性能下降。纳米纤维素是纤维素经过机械或者化学方法处理得到的直径小于100nm的超微细纤维,是纤维素最小物理结构单元。与非纳米纤维素相比,纳米纤维素具有许多优良特性,如高结晶度、高纯度、高杨氏模量、高强度、高亲水性、高透明度等;而且由于具有可再生、可生物降解、生物相容性好、质量轻等特点,因此,纳米纤维素在造纸、制鞋、材料、建筑、汽车、食品、化妆品、电子产品、医学等领域有广阔的应用前景。将纳米纤维素添加到可降解塑料中,可以提高材料的强度,从而减少可降解塑料的用量、降低生产成本。专利CN105885367A公开了一种纤维素纳米纤维/聚乳酸复合材料及其制备方法。该方法将纤维素纳米纤维分散液依次通过有机溶剂去水、甲苯溶剂置换丙酮、加入乙酸酐和吡啶反应等提高其分散性,然后将其分散在二氯甲烷或氯仿等溶剂中,加入聚乳酸,溶解后得到纳米纤维素与聚乳酸的混合溶液,干燥得到纤维素纳米纤维/聚乳酸复合材料。该复合材料粉碎后可直接使用,或作增强母粒,通过熔融挤出法、注塑法等进一步与聚乳酸复合,制备纤维含量更低、力学强度更高、结晶速度更快的纤维素纳米纤维增强聚乳酸复合材料。该方法需要使用甲苯、丙酮、乙酸酐、吡啶、氯仿、二氯甲烷等多种有机溶剂,对环境造成污染,也不利于操作人员的健康。专利CN104672825A公开了一种聚己二酸对苯二甲酸丁二醇酯/纳米纤维素可降解复合材料及其制备方法。该方法将纳米纤维素和PBAT分别分散液氯仿中,得到纳米纤维素悬浮液A和PBAT溶液B,然后将A和B混合得到C,再与乙醇混合,提纯、真空干燥后得到PBAT/纳米纤维素可降解复合材料。该方法中也使用了大量有机溶剂,对环境不友好。
技术实现思路
为克服上述现有技术的不足,本专利技术提供了一种制备含纳米纤维素的可降解塑料母粒的方法。具体步骤为:(1)采用化学法或机械法处理纤维原料制备纳米纤维素分散液。(2)将可降解塑料颗粒与一定量增塑剂在机械搅拌下混合均匀,并在65~100℃条件下中保持10~50min。(3)将一定量步骤(1)所得纳米纤维素加入到步骤(2)混合体系中,机械搅拌均匀,保持30~120min。(4)将步骤(3)混合物放在室温或加热条件下进行干燥,期间间歇或者连续搅拌以使物料上下部均匀干燥,即得到固含量可高达99%的含纳米纤维素的母粒。所述纤维原料为木浆、棉浆、麻浆、竹浆、蔗渣、麦草、稻草、马铃薯茎秆或玉米芯等,可含木素或不含木素。所述化学法可采用硫酸、盐酸或其混合酸,机械法采用胶体磨、均质机、高压微射流机等。所述纳米纤维素包括纳米纤维素和微纤化纤维素,纤维素纳米晶分散液的固含量为1%左右、直径为5~100nm;微纤化纤维素分散液固含量可达5%左右、直径为10~500nm。所述可降解塑料颗粒包括聚乳酸、聚己二酸对苯二甲酸丁二酯等。所述增塑剂包括聚乙二醇、乙二醇、甘油等,塑化剂的用量为可降解塑料质量的1~50%。所述机械搅拌设备可以是高速混合机(自发热或加热)或者高速搅拌机。所述纳米纤维素质量为可降解塑料的1~30%。所述混合物加热温度为30~55℃。与现有技术相比,本专利技术方法操作步骤简单、不使用有毒溶剂、绿色环保、成本优势明显,所得含纳米纤维素的可降解塑料母粒可添加到可降解塑料中,采用熔融造粒、挤出、吹塑等加工得到薄膜、板材等材料。由于母粒中纳米纤维素的可以提到增强作用,故价格昂贵的可降解塑料颗粒的用量可以减少,从而降低产品的成本。具体实施方式以下结合实施例和试验数据对本专利技术上述的和另外的技术特征和优点作更详细的说明,但是不以实施例为限。实施例1:采用研磨机研磨不含木素的玉米芯,得到纳米纤维素分散液(MFC),其固含量为3.9%,纳米纤维素直径约为300nm。在容器中称取一定量聚乳酸颗粒,放在水浴中进行加热,水浴锅的温度设置为98℃,并用机械搅拌器进行搅拌,搅拌机转速为30rpm;在聚乳酸颗粒体系中加入甘油,甘油与聚乳酸的质量比为5∶100。10min后,加入纳米纤维素分散液,其对聚乳酸的质量比为1∶100,继续搅拌45min。将纳米纤维素、聚乳酸、甘油混合体系放入烘箱中,50℃条件下干燥3h,期间每隔1h搅拌1次使物料上下均匀受热干燥,得到固含量为98%的含纳米纤维素的聚乳酸母粒。该母粒可与聚乳酸、淀粉等混合,熔融造粒,然后挤出、吹膜,该颗粒用量为2%时,聚乳酸用量减少6%、淀粉用量增加4%,膜的强度基本保持不变。实施例2:将漂白化学桉木浆打浆后再用研磨机研磨,得到纳米纤维素分散液(MFC),其固含量为1.7%,纳米纤维素直径为100nm。将聚乙二醇PEG-6000溶解于水中,固含量为40%;称本文档来自技高网
...

【技术保护点】
1.一种制备含纳米纤维素的可降解塑料母粒的方法,其特征在于具体步骤为:/n(1)采用化学法或机械法处理纤维原料制备纳米纤维素分散液;/n(2)将可降解塑料颗粒与一定量增塑剂在机械搅拌下混合均匀,并在65~100℃条件下中保持10~50min;/n(3)将一定量步骤(1)所得纳米纤维素加入到步骤(2)混合体系中,机械搅拌均匀,保持30~120min;/n(4)将步骤(3)混合物放在室温或加热条件下进行干燥,期间间歇或者连续搅拌以使物料上下部均匀干燥,即得到固含量可高达99%的含纳米纤维素的母粒。/n

【技术特征摘要】
1.一种制备含纳米纤维素的可降解塑料母粒的方法,其特征在于具体步骤为:
(1)采用化学法或机械法处理纤维原料制备纳米纤维素分散液;
(2)将可降解塑料颗粒与一定量增塑剂在机械搅拌下混合均匀,并在65~100℃条件下中保持10~50min;
(3)将一定量步骤(1)所得纳米纤维素加入到步骤(2)混合体系中,机械搅拌均匀,保持30~120min;
(4)将步骤(3)混合物放在室温或加热条件下进行干燥,期间间歇或者连续搅拌以使物料上下部均匀干燥,即得到固含量可高达99%的含纳米纤维素的母粒。


2.根据权利要求1所述的一种制备含纳米纤维素的可降解塑料母粒的方法,其特征在于:所述纳米纤维素包括纳米纤维素和微纤化纤维素,纤维素纳米晶分散液的固含量为1%左右、直径为5~100nm;微纤化纤维素分散液固含量可达5%左右、直径为10~500nm。


3.根据权利要求1所述的一种制备含纳米纤维素的可降解塑料母粒的方法,其特征在于:所述可降解塑料颗粒包括聚乳酸、聚己二酸对苯二甲酸丁二酯等。

<...

【专利技术属性】
技术研发人员:杜艳芬刘金刚陈京环
申请(专利权)人:中国制浆造纸研究院有限公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1