【技术实现步骤摘要】
一种动态社交网络中的链路预测方法
本专利技术涉及链路预测领域,特别涉及一种动态社交网络中的链路预测方法。
技术介绍
随着海量数据在社交、通信、生物等网络中不断聚集,这种网络结构化的数据非常有效地模拟了现实世界中各种类型的链接数据。其中,节点表示实体,边表示实体之间的链接。对网络信息尤其是链接信息的挖掘成为了一个新兴的研究方向。链接预测是根据社会网络现有的结构,预测隐含的链接或将来可能产生的链接。链接预测除了具有很高的学术研究价值,还具有许多重要的商业应用。例如,Facebook等社交网站中推荐朋友;淘宝等电子商务网站中给用户推荐感兴趣的商品;医学研究者根据基因网络中的不规则联系找到导致疾病的基因;网络安全领域,链接预测亦可实现对垃圾邮件的检测,对实际的舆情监控系统中有着十分重要的作用。提高应用价值的关键是如何有效的挖掘到网络结构中隐含的丰富信息,提高链接预测的准确性。网络信息的有效学习方法之一是网络表示学习,旨在根据相关的优化目标,将大规模、高维度的网络嵌入到低维度的空间中,用低维稠密的向量表示网络中的节点,并且这些 ...
【技术保护点】
1.一种动态社交网络中的链路预测方法,用于根据动态社交网络中1到T时刻的网络信息预测T+1时刻的网络信息,将动态社交网络中T个时刻的网络用G表示,G={G
【技术特征摘要】
1.一种动态社交网络中的链路预测方法,用于根据动态社交网络中1到T时刻的网络信息预测T+1时刻的网络信息,将动态社交网络中T个时刻的网络用G表示,G={G1,...,GT},t时刻的网络表示为Gt=(V,Et,Wt),1≤t≤T,其中V表示t时刻网络中的节点集,Et为t时刻网络中任意两节点之间存在的边的集合,Wt为t时刻网络中任意两节点之间存在的边之间的权重集合,其特征在于:包括以下步骤:
步骤1、将t时刻网络中的节点Vi映射到低维嵌入空间中,表达式为:ft:Vi→Rd;
其中,Vi∈V,d为预设的低维嵌入空间的维数,d远小于节点集V中节点的个数,Rd为d维实数空间;
步骤2、将t时刻网络中任意节点Vi的低维表示向量记为其中i=1,2,3...N,N为t时刻网络对应节点集中的节点总数;
步骤3、选择出t时刻网络中任意两节点间具有边的所有节点对,并计算出所有节点对之间的局部特征对应的损失函数
步骤4、在t时刻网络中选择出满足以下条件的节点m和节点n:任意两个不同节点m和节点n之间没有边,节点m和节点n之间具有一个或多个共同的邻居节点,则计算满足该条件的所有节点m和节点n之间的二阶相似性对应的损失函数;具体包括以下步骤:
步骤4-1、在t时刻的网络中,假设任意两个不同节点m和节点n之间没有边,节点m和节点n之间具有一个或多个共同的邻居节点,将其中一个共同邻居节点记为k,计算t时刻网络中节点m和节点n受共同邻居节点k的影响程度,记为计算公式为:
其中,表示节点m和节点n对共同邻居节点k的影响程度,ωmk为t时刻网络中节点m和节点k之间边的权重,ωnk为t时刻网络中节点n和节点k之间边的权重,emk为t时刻网络中节点m和节点k之间的边,enk为t时刻网络中节点n和节点k之间的边;为节点m和节点k之间的亲密程度,为节点m在t时刻网络中的影响因子,为t时刻网络中节点m的低维表示向量,为t时刻网络中节点k的低维表示向量;为节点n和节点k之间的亲密程度,为节点n在t时刻网络中的影响因子,为t时刻网络中节点n的低维表示向量;
步骤4-2、计算t+1时刻,节点m和节点n受其共同邻居节点k的影响建立新边的概率,以及不受其共同邻居节点k的影响,继续保持原来社交状态的概率,并将t+1时刻,节点m和节点n受其共同邻居节点k影响的概率记为
其中,σ(.)为逻辑回归函数,即θd为节点m和节点n之间是否确定建立边的实数向量,该向量与节点低维表示向量的维度数相同;y=1表示t+1时刻网络中节点m和节点n之间受其共同邻居节点k的影响建立新边;y=0表示t+1时刻网络中节点m和节点n不受其共同邻居节点k的影响未形成新边;
步骤4-3、合并步骤4-2中的两个公式,得到:
其中表示t+1时刻的网络中,节点m和节点n之间是否受其邻居节点k影响的概率,y=0或1;
步骤4-4、当节点m和节点n之间具有多个共同邻居节点,将节点m和节点n在t时刻网络中的所有共同邻居节点集记为Nt(m,n);将节点m和节点n是否受某个共同邻居节点k1的影响在未来时刻是否建立新边的函数记为k1∈Nt(m,n);或0;表示节点m和节点n受某个共...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。