多姿态人体检测方法、计算机存储介质及电子设备技术

技术编号:23984881 阅读:34 留言:0更新日期:2020-04-29 13:03
本发明专利技术提供了一种执法办案区场景下的多姿态人体检测方法、计算机存储介质及电子设备,所述方法,包括以下步骤:S1、在RefineDet的ARM分支中加入FSAF模块,构成FSAF‑RefineDet网络结构;S2、采集执法办案区场景下的人体图像数据,进行人体信息标注,并将人体信息标注后的所述人体图像数据划分为训练集和测试集;S3、对训练集进行旋转扩增;S4、对旋转扩增后的训练数据尺度归一化后进行随机增强和随机添加噪声;S5、对FSAF‑RefineDet网络进行训练,得到训练模型;S6、将训练模型在测试集上进行测试,选择识别精度最高的训练模型作为最终检测模型。根据本发明专利技术实施例的方法,有效减少算法在执法办案区场景下的误检率和漏检率,提高识别精度,且不增加模型的计算代价。

Multi pose human detection method, computer storage medium and electronic equipment

【技术实现步骤摘要】
多姿态人体检测方法、计算机存储介质及电子设备
本专利技术涉及人体检测领域,更具体地,涉及一种执法办案区场景下的多姿态人体检测方法、计算机存储介质及电子设备。
技术介绍
在执法办案区场景下,办案民警需时刻监控犯罪嫌疑人是否存在异常行为,这往往需要办案民警同时监控多个执法办案区,这种做法费时费力且效率低下。为了提高公安民警在执法办案区场景下的监控效率,提出针对该场景下的一种异常行为识别分析系统,其通过监控视频对嫌疑人的行为进行实时的自动识别。该系统主要包括了人体检测,人体追踪以及行为识别算法。本专利技术主要是针对此应用场景开发的一个高精度,高效率的人体检测算法。目前基于视频图像的人体检测技术主要分为两种,一种是基于传统机器学习方法,另一种是基于深度学习的方法。基于传统机器学习的方法,通常是利用手工设计特征提取算子对图像进行特征提取,然后再将这些特征用于训练分类器,最后在多尺度的图像上使用滑动窗口的方式进行人体检测。例如:公开号为“CN104680134A”的专利技术专利,提出了一种快速的人体检测方法,其提取多尺度的HOG特征训练分类本文档来自技高网...

【技术保护点】
1.一种执法办案区场景下的多姿态人体检测方法,其特征在于,包括以下步骤:/nS1、在RefineDet的ARM分支中加入FSAF模块,构成FSAF-RefineDet网络结构;/nS2、采集执法办案区场景下的人体图像数据,进行人体信息标注,并将人体信息标注后的所述人体图像数据划分为训练集和测试集;/nS3、对所述训练集进行旋转扩增;/nS4、对旋转扩增后的训练数据尺度归一化后进行随机增强和随机添加噪声;/nS5、对所述FSAF-RefineDet网络进行训练,得到训练模型;/nS6、将所述训练模型在所述测试集上进行测试,选择识别精度最高的训练模型作为最终检测模型。/n

【技术特征摘要】
1.一种执法办案区场景下的多姿态人体检测方法,其特征在于,包括以下步骤:
S1、在RefineDet的ARM分支中加入FSAF模块,构成FSAF-RefineDet网络结构;
S2、采集执法办案区场景下的人体图像数据,进行人体信息标注,并将人体信息标注后的所述人体图像数据划分为训练集和测试集;
S3、对所述训练集进行旋转扩增;
S4、对旋转扩增后的训练数据尺度归一化后进行随机增强和随机添加噪声;
S5、对所述FSAF-RefineDet网络进行训练,得到训练模型;
S6、将所述训练模型在所述测试集上进行测试,选择识别精度最高的训练模型作为最终检测模型。


2.根据权利要求1所述的方法,其特征在于,在步骤S1中,所述RefineDet的主干网络为VGG16的全卷积结构,所述主干网络包括17个卷积层,其中,Conv4_3、Conv5_3、fc7和Conv6_2输出的特征作为ARM分支和ODM的特征金字塔分支的特征输入。


3.根据权利要求2所述的方法,其特征在于,步骤S1包括:
S11、对Conv4_3、Conv5_3、fc7和Conv6_2分别接上一个核为3*3,输出通道为2的卷积层,并接上FocalLoss,以用于预测每一个空间位置2个目标类别的概率;
S12、对Conv4_3、Conv5_3、fc7和Conv6_2分别接上一个核为3*3,输出通道为4的卷积层,并接上IOULoss,以用于预测目标外包围框。


4.根据权利要求1所述的方法,其特征在于,步骤S2包括:
S21、对执法办案区场景下不同人体姿态、不同视角和不同图像清晰度的数据进...

【专利技术属性】
技术研发人员:朱勋沐毛亮林焕凯周谦侯玉清
申请(专利权)人:高新兴科技集团股份有限公司
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1