基于空气动力涡轮驱动的座舱增压供氧系统技术方案

技术编号:23694449 阅读:50 留言:0更新日期:2020-04-08 09:07
本发明专利技术公开了一种基于空气动力涡轮驱动的座舱增压供氧系统,包含温度传感器、第一电动控制阀、第一换热器、水分离器、文丘里稳压器、压力传感器、第一流量传感器、空气动力涡轮、第二电动控制阀、中空纤维膜分离器、离心式压缩机、第二流量传感器、第二换热器、第三流量传感器和控制器。本发明专利技术应用空气动力涡轮驱动的离心式压缩机,对中空纤维膜分离器的富氧气体予以回收和利用。提高了座舱氧含量,方便了座舱压力高度的提升,有效地降低了对座舱结构强度的要求;降低了从发动机压气机的引气量,减少了飞机的代偿损失;系统无电机驱动,制造可行;空气动力涡轮具有转速高、体积小、流量大的特点,符合座舱增压供氧的技术要求。

【技术实现步骤摘要】
基于空气动力涡轮驱动的座舱增压供氧系统
本专利技术涉及航空系统
,尤其涉及一种基于空气动力涡轮驱动的座舱增压供氧系统。
技术介绍
在飞行器整个飞行过程中,乘员将会受到各种环境因素的影响,其中缺氧对人体生理活动的影响最为强烈,因此实现飞机座舱增压供氧对于保障乘员的生命安全至关重要。当飞机在高空飞行时,必须采取相应措施保证其乘员座舱氧浓度水平不低于海拔2400米对应的氧浓度水平,其原因是:2400米是长时间飞行不会因轻度缺氧而过度疲劳的最大高度。为此,座舱结构承受了巨大的压力差,它提高了座舱结构强度要求和重量,带来了较大的发动机引气量损失和燃油代偿损失。由于飞机座舱压力制度的确定与座舱的氧浓度水平有着密切的联系,如果能有效地提高飞机座舱的氧浓度,就可以在保证旅客和空勤人员正常生活与工作水平的同时,对飞机座舱的压力高度进行适当的提升。座舱压力高度的提升将减小飞机结构损坏时所造成爆炸减压的危险性并且有效地降低对座舱结构强度的技术要求,从而减轻飞机的总体重量、减小燃油代偿损失。同时座舱压力高度的提升也意味着发动机压气机的引气量的减少,这将极大程度地提升飞机总体性能。目前,采用中空纤维膜机载制氮技术对飞机燃油箱进行惰化保护已经被世界各国的多种类型的飞机接受和采用,其中中空纤维膜所制取的富氧气体往往作为废气排出机外。本专利技术采用中空纤维膜所制取的富氧气体作为增压供氧源,应用空气动力涡轮驱动的离心式压缩机对富氧气体予以回收和利用,有效地提高座舱的氧浓度水平从而减少从发动机压气机的引气量、降低座舱结构重量并且进一步地提高飞机座舱的安全性与舒适性。本专利技术由于系统无电机驱动,制造可行,同时空气动力涡轮具有转速高、体积小、流量大、方便制造等特点,相比于其他增压方式更符合座舱增压供氧的技术要求。采用空气动力涡轮驱动的离心式压气机对富氧气体进行回收和利用还能一定程度上降低中空纤维膜富氧气体出口的压力,从而提高中空纤维膜的分离效率。因此采用该基于空气动力涡轮驱动的座舱增压供氧系统能在多个方面提升飞机的总体性能,研制这样的系统需要一定技术创新。
技术实现思路
本专利技术所要解决的技术问题是针对
技术介绍
中所涉及到的缺陷,提供一种基于空气动力涡轮驱动的座舱增压供氧系统。本专利技术为解决上述技术问题采用以下技术方案:基于空气动力涡轮驱动的座舱增压供氧系统,包含温度传感器、第一电动控制阀、第一换热器、水分离器、文丘里稳压器、压力传感器、第一流量传感器、空气动力涡轮、第二电动控制阀、中空纤维膜分离器、离心式压缩机、第二流量传感器、第二换热器、第三流量传感器和控制器;所述中空纤维膜分离器包含空气入口、富氧气体出口和富氮气体出口,用于将冷却清洁后的发动机引气分离为富氧气体、富氮气体后分别经富氧气体出口和富氮气体出口输出;飞机发动机的引气出口、温度传感器、第一电动控制阀、第一换热器的热边通道、水分离器、文丘里稳压器、压力传感器、第一流量传感器的一端通过管道依次相连;所述第一换热器冷边通道的入口通过管道与外界冲压空气相连,第一换热器冷边通道的出口通过管道将经过第一换热器冷边通道的气体排至机外;所述第一流量传感器的另一端分别和所述第二电动控制阀的一端、空气动力涡轮的入口通过管道相连;所述第二电动控制阀的另一端和所述中空纤维膜分离器的空气入口管道相连;所述中空纤维膜分离器的富氮气体出口和所述第二流量传感器的一端管道相连;所述第二流量传感器的另一端和飞机的燃油箱惰化管路相连,用于将富氮气体通入燃油箱对燃油箱进行惰化保护;所述空气动力涡轮的输出轴和所述离心式压缩机的转轴同轴固连,空气动力涡轮的出口与所述第二换热器冷边通道的入口管道相连,所述空气动力涡轮用于利用经过其内的空气作为动力带动离心式压缩机工作;所述第二换热器冷边通道的出口通过管道将经过第二换热器冷边通道的气体排至机外;所述中空纤维膜分离器的富氧气体出口、离心式压缩机、第二换热器热边通道、第三流量传感器的一端通过管道依次相连;所述第三流量传感器的另一端通过管道和飞机的座舱相连;所述控制器分别和温度传感器、压力传感器、第一流量传感器、第二流量传感器、第三流量传感器、第一电动控制阀、第二电动控制阀电气相连,用于获取温度传感器、压力传感器、第一流量传感器、第二流量传感器、第三流量传感器的感应信息并控制第一电动控制阀、第二电动控制阀工作。本专利技术采用以上技术方案与现有技术相比,具有以下技术效果:本专利技术应用空气动力涡轮驱动的离心式压缩机,对中空纤维膜分离器的富氧气体予以回收和利用。提高了座舱氧含量,方便了座舱压力高度的提升,有效地降低了对座舱结构强度的要求;降低了从发动机压气机的引气量,减小了飞机的代偿损失;系统无电机驱动,制造可行;空气动力涡轮具有转速高、体积小、流量大的特点,符合座舱增压供氧的技术要求。附图说明图1是本专利技术一种基于空气动力涡轮驱动的座舱增压供氧系统的示意图。图中,1-温度传感器,2-第一电动控制阀,3-第一换热器,4-水分离器,5-文丘里稳压器,6-压力传感器,7-第一流量传感器,8-空气动力涡轮,9-第二电动控制阀,10-中空纤维膜分离器,11-离心式压缩机,12-第二流量传感器,13-燃油箱,14-第二换热器,15-第三流量传感器,16-座舱,17-控制器。具体实施方式下面结合附图对本专利技术的技术方案做进一步的详细说明:本专利技术可以以多种不同的形式实现,而不应当认为限于这里所述的实施例。相反,提供这些实施例以便使本公开透彻且完整,并且将向本领域技术人员充分表达本专利技术的范围。在附图中,为了清楚起见放大了组件。如图1所示,本专利技术公开了一种基于空气动力涡轮驱动的座舱增压供氧系统,包含温度传感器、第一电动控制阀、第一换热器、水分离器、文丘里稳压器、压力传感器、第一流量传感器、空气动力涡轮、第二电动控制阀、中空纤维膜分离器、离心式压缩机、第二流量传感器、第二换热器、第三流量传感器和控制器;所述中空纤维膜分离器包含空气入口、富氧气体出口和富氮气体出口,用于将冷却清洁后的发动机引气分离为富氧气体、富氮气体后分别经富氧气体出口和富氮气体出口输出;飞机发动机的引气出口、温度传感器、第一电动控制阀、第一换热器的热边通道、水分离器、文丘里稳压器、压力传感器、第一流量传感器的一端通过管道依次相连;所述第一换热器冷边通道的入口通过管道与外界冲压空气相连,第一换热器冷边通道的出口通过管道将经过第一换热器冷边通道的气体排至机外;所述第一流量传感器的另一端分别和所述第二电动控制阀的一端、空气动力涡轮的入口通过管道相连;所述第二电动控制阀的另一端和所述中空纤维膜分离器的空气入口管道相连;所述中空纤维膜分离器的富氮气体出口和所述第二流量传感器的一端管道相连;所述第二流量传感器的另一端和飞机的燃油箱惰化管路相连,用于将富氮气体通入燃油箱对燃油箱进行惰化保护;所述空气动力涡轮的输出轴和所述离心式压缩机本文档来自技高网
...

【技术保护点】
1. 基于空气动力涡轮驱动的座舱增压供氧系统,其特征在于,包含温度传感器、第一电动控制阀、 第一换热器、水分离器、文丘里稳压器、压力传感器、第一流量传感器、空气动力涡轮、第二电动控制阀、中空纤维膜分离器、离心式压缩机、第二流量传感器、第二换热器、第三流量传感器和控制器;/n所述中空纤维膜分离器包含空气入口、富氧气体出口和富氮气体出口,用于将冷却清洁后的发动机引气分离为富氧气体、富氮气体后分别经富氧气体出口和富氮气体出口输出;/n飞机发动机的引气出口、温度传感器、第一电动控制阀、第一换热器的热边通道、水分离器、文丘里稳压器、压力传感器、第一流量传感器的一端通过管道依次相连;/n所述第一换热器冷边通道的入口通过管道与外界冲压空气相连,第一换热器冷边通道的出口通过管道将经过第一换热器冷边通道的气体排至机外;/n所述第一流量传感器的另一端分别和所述第二电动控制阀的一端、空气动力涡轮的入口通过管道相连;/n所述第二电动控制阀的另一端和所述中空纤维膜分离器的空气入口管道相连;/n所述中空纤维膜分离器的富氮气体出口和所述第二流量传感器的一端管道相连;所述第二流量传感器的另一端和飞机的燃油箱惰化管路相连,用于将富氮气体通入燃油箱对燃油箱进行惰化保护;/n所述空气动力涡轮的输出轴和所述离心式压缩机的转轴同轴固连,空气动力涡轮的出口与所述第二换热器冷边通道的入口管道相连,所述空气动力涡轮用于利用经过其内的空气作为动力带动离心式压缩机工作;/n所述第二换热器冷边通道的出口通过管道将经过第二换热器冷边通道的气体排至机外;/n所述中空纤维膜分离器的富氧气体出口、离心式压缩机、第二换热器热边通道、第三流量传感器的一端通过管道依次相连;/n所述第三流量传感器的另一端通过管道和飞机的座舱相连;/n所述控制器分别和温度传感器、压力传感器、第一流量传感器、第二流量传感器、第三流量传感器、第一电动控制阀、第二电动控制阀电气相连,用于获取温度传感器、压力传感器、第一流量传感器、第二流量传感器、第三流量传感器的感应信息并控制第一电动控制阀、第二电动控制阀工作。/n...

【技术特征摘要】
1.基于空气动力涡轮驱动的座舱增压供氧系统,其特征在于,包含温度传感器、第一电动控制阀、第一换热器、水分离器、文丘里稳压器、压力传感器、第一流量传感器、空气动力涡轮、第二电动控制阀、中空纤维膜分离器、离心式压缩机、第二流量传感器、第二换热器、第三流量传感器和控制器;
所述中空纤维膜分离器包含空气入口、富氧气体出口和富氮气体出口,用于将冷却清洁后的发动机引气分离为富氧气体、富氮气体后分别经富氧气体出口和富氮气体出口输出;
飞机发动机的引气出口、温度传感器、第一电动控制阀、第一换热器的热边通道、水分离器、文丘里稳压器、压力传感器、第一流量传感器的一端通过管道依次相连;
所述第一换热器冷边通道的入口通过管道与外界冲压空气相连,第一换热器冷边通道的出口通过管道将经过第一换热器冷边通道的气体排至机外;
所述第一流量传感器的另一端分别和所述第二电动控制阀的一端、空气动力涡轮的入口通过管道相连;
所述第二电动控制阀的另一端和所述中空纤维膜分离器的空气入口管道相连;<...

【专利技术属性】
技术研发人员:喻成璋刘卫华张瑞华周鹏鹤
申请(专利权)人:南京航空航天大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1