【技术实现步骤摘要】
基于卷积神经网络的雷达干扰检测识别方法
本专利技术涉及干扰信号类型的识别,具体涉及一种基于卷积神经网络的雷达干扰检测识别方法。
技术介绍
随着数字射频存储(DFRM)技术的出现和迅速应用,现代电子战中雷达有源干扰的逼真度更高,形式复杂多样,对雷达的正常工作及生存造成了严重的威胁,因此如何有效对抗干扰越来越成为现代雷达的迫切需求。抗干扰的前提是干扰的正确识别,传统的方法是基于特征提取的干扰分类,但该类方法需人工选取特征且泛化能力弱。近年来,也有许多雷达干扰识别算法不断涌现,但仅仅关注于某几类干扰或分类算法研究,针对雷达干扰的识别,缺乏一种泛华能力强且自主化高的方法。
技术实现思路
针对现有技术中的上述不足,本专利技术提供的基于卷积神经网络的雷达干扰检测识别方法解决了现有技术进行雷达识别时需要人工选取特征且泛化能力弱的问题。为了达到上述专利技术目的,本专利技术采用的技术方案为:提供一种基于卷积神经网络的雷达干扰检测识别方法,其包括:S1、对采集的雷达信号/仿真的雷达信号进行下变频和降采 ...
【技术保护点】
1.基于卷积神经网络的雷达干扰检测识别方法,其特征在于,包括:/nS1、对采集的雷达信号/仿真的雷达信号进行下变频和降采样预处理;/nS2、采用低频率分辨率、高时间分辨率的短时傅里叶变换对预处理后信号进行时域变换得到时频图像a;/nS3、对时频图像a依次执行恒虚警检测和干扰测量,得到干扰信号的时间参数和频率参数;/nS4、根据时间参数,提取采集的雷达信号/仿真的雷达信号中的干扰信号;根据频率参数,采用带通滤波器对提取的干扰信号进行滤波处理;/nS5、将滤波后的信号采用高频率分辨率、低时间分辨率的短时傅里叶变换进行时域变换得到时频图像b,并对时频图像b进行归一化处理;/nS6 ...
【技术特征摘要】
1.基于卷积神经网络的雷达干扰检测识别方法,其特征在于,包括:
S1、对采集的雷达信号/仿真的雷达信号进行下变频和降采样预处理;
S2、采用低频率分辨率、高时间分辨率的短时傅里叶变换对预处理后信号进行时域变换得到时频图像a;
S3、对时频图像a依次执行恒虚警检测和干扰测量,得到干扰信号的时间参数和频率参数;
S4、根据时间参数,提取采集的雷达信号/仿真的雷达信号中的干扰信号;根据频率参数,采用带通滤波器对提取的干扰信号进行滤波处理;
S5、将滤波后的信号采用高频率分辨率、低时间分辨率的短时傅里叶变换进行时域变换得到时频图像b,并对时频图像b进行归一化处理;
S6、采用维纳滤波算法对归一化处理后的时频图像b进行平滑处理,之后对平滑处理结果进行自适应裁剪;
S7、采用双三次插值算法对自适应裁剪后的图像进行缩放得到识别数据;
S8、将识别数据输入预训练CNN模型进行识别,得到干扰信号的类型。
2.根据权利要求1所述的基于卷积神经网络的雷达干扰检测识别方法,其特征在于,所述预训练CNN模型的训练方法包括:
A1、利用仿真的纯干扰信号的频率参数,并根据预设的频率参数,采用带通滤波器对纯干扰信号进行滤波处理;
A2、将滤波后的信号采用高频率分辨率、低时间分辨率的短时傅里叶变换进行时域变换得到时频图像c,并对时频图像c进行归一化处理;
A3、采用维纳滤波算法对归一化后的时频图像c进行平滑处理,之后对平滑处理结果进行自适应裁剪;
A4、采用双三次插值算法对自适应裁剪后的图像进行缩放得到训练数据;
A5、重复步骤A1至步骤A4得到设定数量的训练数据,并将所有训练数据送入CNN模型进行训练,得到识别干扰信号类别的预训练CNN模型。
3.根据权利要求1所述的基于卷积神经网络的雷达干扰检测识别方法,其特征在于,对时频图像a执行恒虚警检测的方法包括:
S311、采用顺序滑窗向平方律检波器中输入时频图像a中未选取的前n个数据,并将输出值按大小进行排序;
S312、选取第k个数据的输出值与门限因子d相乘作为判决阈值,将输出值与判据阈值的差异大于设定门限的数据标记为干扰信号,其余标记为背景信号,按照时频图像a中数据原始顺序重置标记顺序;
S313、判断时频图像a中的所有数据是否都进行标记,若是,完成检测,否则,返回步骤S311。
4.根据权利要求1所述的基于卷积神经网络的雷达干扰检测识别方法,其特征在于,对恒虚警检测结果进行干扰测量的方法包括:
S321、根据恒虚警检测结果,向时间维投影获得干扰信号的时间维起始点数和结束点数;
S322、删除时间小于设定阈值的干扰信号的时间维起始点数和结束点数,并将余下时间维起始点数和结束点数乘上时间分辨率,得到干扰信号时间参数开始时间和结束时间;
S323、采用时间维起始点数和结束点数查找恒...
【专利技术属性】
技术研发人员:张伟,刘强,康慧,吴筱诺,李浩,曹建蜀,
申请(专利权)人:电子科技大学,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。