充液圆柱壳固有频率预报方法技术

技术编号:23344027 阅读:45 留言:0更新日期:2020-02-15 04:06
本发明专利技术的目的在于提供充液圆柱壳固有频率预报方法,包括以下步骤:采用Kennard薄壳理论建立圆柱壳的自由振动方程;通过求解圆柱坐标系下的Helmholtz波动方程,将流体作为径向载荷作用于圆柱壳上,建立充液圆柱壳动力学模型;选取改进状态向量;由Kennard薄壳理论得到传统状态向量的元素位移、转角、力等与中面位移的关系,从而建立改进状态向量与传统状态向量之间的转换矩阵。引入充液圆柱壳两端边界条件预报充液圆柱壳固有频率。本发明专利技术降低了一阶导数方程和传递矩阵推导工作量及推导错误出现的可能性,适用范围广,实现过程简便,非常有利于编程计算;预报精度高,整个求解过程不会导致变量自由度数的增加,保证了较高的预报效率。

Prediction method of natural frequency of liquid filled cylindrical shell

【技术实现步骤摘要】
充液圆柱壳固有频率预报方法
本专利技术涉及的是一种固有频率预测方法。
技术介绍
充液圆柱壳结构在建筑及船舶管路系统中普遍存在,对其固有频率的预报也存在较多的方法。传递矩阵方法因其具有涉及变量自由度少、求解简便快捷等优点,成为求解链式结构动力学问题的常用方法,在求解梁或管结构动力学、管内声传播及管路系统流固耦合等问题时有较多应用。若将结构控制微分方程写成一阶微分方程组的形式,则起点与终点的状态向量间即可用传递矩阵建立简单关系,利用边界条件即可进行充液圆柱壳固有频率预报。因此,传递矩阵法计算精度主要取决于状态向量的选取与矩阵方程的积分。动力方程积分方法研究较多,如精细时程积分法、龙格库塔法、齐次扩容积分法。随着计算机技术的发展,积分计算精度不断提高,已基本能满足要求。而随着传递矩阵法在多自由度系统中的应用,状态向量一阶方程的推导却越加困难。传统状态向量一般由位移、速度、力、力矩等组成,而状态向量并不能从振动方程中直接获得,造成状态向量一阶微分方程推导过程非常复杂,不仅工作量增加,且常有错误出现。罗文(罗文,输流管路流固耦合计算研究.本文档来自技高网...

【技术保护点】
1.充液圆柱壳固有频率预报方法,其特征是:/n(1)充液圆柱壳动力学建模:/n首先采用Kennard薄壳理论建立圆柱壳的自由振动方程同时将流体作为径向载荷作用于圆柱壳上;之后通过求解圆柱坐标系下的Helmholtz波动方程,根据耦合面上流体、固体的边界条件最终推导得到充液圆柱壳动力学模型:/n考虑壳体惯性力的影响并且有流体载荷作用,Kennard薄壳理论振动微分方程形式如下:/n

【技术特征摘要】
1.充液圆柱壳固有频率预报方法,其特征是:
(1)充液圆柱壳动力学建模:
首先采用Kennard薄壳理论建立圆柱壳的自由振动方程同时将流体作为径向载荷作用于圆柱壳上;之后通过求解圆柱坐标系下的Helmholtz波动方程,根据耦合面上流体、固体的边界条件最终推导得到充液圆柱壳动力学模型:
考虑壳体惯性力的影响并且有流体载荷作用,Kennard薄壳理论振动微分方程形式如下:









其中为与圆柱壳体材料相同的平板中伸缩波的传播相速度;p为管内流体作用在圆柱壳内壁上的水动压力;
对轴向半波数为m、周向波数为n的振动模态,ωmn为频率,上式的解写为:









圆柱壳内部流体方程满足:



假设内部流体声压的解写为:




为径向波数,满足下式:



其中:kf=ω/cf,cf为管内流体自由声场波速,km表示轴向波数,与系统的边界条件有关。
在r=R处,连续性条件为:



将式w(x,θ,t)和式p(θ,r,x,t)代入连续性条件得:



(2)改进状态向量选取:
将式(2)u(x,θ,t)、v(x,θ,t)、w(x,θ,t)和式p(x,θ,t)|r=R代入Kennard薄壳理论振动微分方程得:









直接由上式选择改进状态向量:



利用改进状态向量改写:



C为8阶方阵:
C(1,2)=C(3,4)=C(5,...

【专利技术属性】
技术研发人员:柳贡民曹银行张文平张新玉明平剑曹贻鹏国杰赵晓臣
申请(专利权)人:哈尔滨工程大学
类型:发明
国别省市:黑龙;23

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1