【技术实现步骤摘要】
一种可估计未知有效声速的水下单信标定位方法
本专利技术属于水下定位
,特别涉及一种水下航行器的单信标定位方法。
技术介绍
精确的位置反馈是水下航行器完成既定水下任务的基础。由于水下电磁波信号衰减较快,广泛应用于陆地与天空定位的GNSS系统在水下无法应用。现有主流的水下定位方式包括以惯性导航为代表的航位推算方法以及以长基线定位为代表的水下声学定位方法。其中惯性导航设备往往会随时间增长产生较大累计误差,无法长时间用于水下定位,而高精度的惯性导航设备成本极高,限制了其在水下航行器中的应用。现有主流的水下声学定位方式包括长基线定位、超短基线定位、单信标定位等。长基线定位与超短基线定位发展均较为成熟,但其成本通常较高,且实时性通常较差,这限制了其在水下航行器中的应用。而新兴的水下单信标定位系统融合航位推算数据与单水声信标的测距信息,在定位成本和实时性方面均有较大的优势。水声测距是通过检测水声信号的传递时间乘以水声声速获得。目前的水下单信标定位方法通常假设水声声速完全已知,但实际的水声声速收到水域温度、盐度、密度、水深等因素的影响 ...
【技术保护点】
1.一种可估计未知有效声速的水下单信标定位方法,其特征在于,包括以下步骤:/nA.以定位区域内任意点为原点,东、北、天三个方向分别设为x,y,z轴,建立水下局部惯性坐标系;/nB.通过水下航行器所搭载的GPS系统获取该所述水下航行器在水下局部惯性系当中的初始位置;/nC.建立所述水下航行器的运动学模型以及观测模型并进行离散化;/nD.建立有效声速的随机模型、函数模型以及预测模型;/nE.水声信标周期性广播水声信号,水声信号发射时间及水声信标位置已知;所述水下航行器在未接收到水声信号时,通过自身配备的电子罗盘、深度计以及读取自身的螺旋桨转速信息进行航位推算,同时进行有效声速随 ...
【技术特征摘要】
1.一种可估计未知有效声速的水下单信标定位方法,其特征在于,包括以下步骤:
A.以定位区域内任意点为原点,东、北、天三个方向分别设为x,y,z轴,建立水下局部惯性坐标系;
B.通过水下航行器所搭载的GPS系统获取该所述水下航行器在水下局部惯性系当中的初始位置;
C.建立所述水下航行器的运动学模型以及观测模型并进行离散化;
D.建立有效声速的随机模型、函数模型以及预测模型;
E.水声信标周期性广播水声信号,水声信号发射时间及水声信标位置已知;所述水下航行器在未接收到水声信号时,通过自身配备的电子罗盘、深度计以及读取自身的螺旋桨转速信息进行航位推算,同时进行有效声速随机模型参数预测;所述水下航行器在接收到所搭载的多普勒测速仪测得的的绝对速度观测后,通过读取所述螺旋桨转速信息及所述电子罗盘信息,构造海流速度观测量并通过Kalman滤波进行海流速度校正;
F.所述水下航行器接收到水声信号后,记录接收时刻,根据已知的水声信号发射时刻及水声信标位置坐标,并考虑水下声速的未知性,以此基于扩展Kalman滤波算法及变分贝叶斯近似,以水声信号传递时间为观测变量,进行所述水下航行器的位置更新。
2.如权利要求1所述的一种可估计未知有效声速的水下单信标定位方法,其特征在于,所述C步骤中,所述运动学模型的建立方法为:
定义状态向量为:
x=[xyvcxvcy]T
其中:x,y为所述水下航行器在所述水下局部惯性坐标系中的水平位置;vcx,vcy为未知的海流速度;
对x求导并加入所述水下航行器运动运动模型噪声影响,得到所述水下航行器的运动学模型:
其中:vwx为所述水下航行器x方向的对水速度;vwy为所述水下航行器y方向的对水速度;vwx及vwy通过读取所述螺旋桨转速与所述电子罗盘测得的航行器艏向角计算得出;ωx为所述水下航行器在x方向的位置不确定性;ωy为所述水下航行器在y方向的位置不确定性;ωcx为x方向的海流不确定性;ωcy为y方向的海流不确定性;
vwx及vwy的计算公式为:式中vw为根据所述螺旋桨转速得出的所述水下航行器对水速度,为所述电子罗盘测得的艏向角。
3.如权利要求2所述的一种可估计未知有效声速的水下单信标定位方法,其特征在于,所述C步骤中,所述观测模型的建立方法为:
S1.建立水声信号传递时间的观测模型;
设所述水下航行器获得所述水声信标发射水声信号的时刻为Te,所述水声信标在所述水下局部惯性坐标系中的空间位置坐标为XTe,YTe,ZTe,所述水下航行器接收到该水声信号的时刻为Ta,观测方程为:
其中:νt为对应的观测噪声;z为所述水下航行器的深度,由深度计精确测得,为已知量;ve为有效声速;
将观测方程记作m=h(x,ve),其中:
S2.建立海流流速观测模型;
根据所述多普勒测速仪测得的所述水下航行器的绝对速度vg,结合所述电子罗盘测得的艏向角计算得到所述水下航行器绝对速度在局部惯性坐标系下的分量vgx,vgy;
根据vgx,vgy以及vwx,vwy,计算得到海流速度观测分量为:
海流观测量为线性,满足mvc=Hx+νvc;
其中:观测向量mvc=[mcxmcy]T;mcx,mcy分别为x,y方向海流速度观测;νvc为海流观测噪声向量,νvc=[νv,cxνv,cy]T,其中νv,cx为x方向的海流不确定性;νv,cy为y方向的海流不确定性;H为海流观测矩阵,满足:
4.如权利要求3所述的一种可估计未知有效声速的水下单信标定位方法,其特征在于,所述C步骤中,所述运动学模型以及观测模型离散化方法为:
S1.运动学模型离散化;
以下标k为时间索引,以Δt=tk+1-tk为离散间隔,运动学模型离散为:
xk+1=Akxk+Bkuk+wk
其中:Ak为运动学方程,满足:
Bk为控制方程,满足:
uk为控制向量,满足uk=[vwx,kvwy,k]T,为已知量;
wk过程噪声向量,满足wk=[ωx,kωy,kωcx,kωcy,k]T,对应各个状态变量的不确定性;将系统状态xk,yk,vcx,k,vcy,k的过程噪声建模为零均值Gauss分布,其协方差矩阵满足:
其中,σw为所述水下航行器对水速度观测不确定性的标准差;σc为海流不确定性的标准差;
S2.观测模型离散化;
所述水下航行器在k-1至k间接收到该水声信号,将其假设为在k时刻接收到该水声信号,即离散后的水声信号传递时间观测方程为:
其中,νt,k为观测噪声,假设其满足方差为Rt,k的Gauss分布;考虑到有效声速ve,k的时变未知性,将ve,k也看作随机变量;离散形式的观测方程写作:
mk=hk(xk,ve,k),
由于海流观测的采样频率较高,假设在每一个离散时间点k处均可以得到海流速度观测,故离散后的海流速度观测方程为:
mvc,k=Hkxk+νvc,k
其中,Hk为k时刻海流速度观测矩阵,满足:
νvc,k为k时刻海流观测噪声,为零均值Gauss分布,其观测噪声协方差矩阵记作:
其中,σvc,m为海流速度观测噪声的标准差。
5.如权利要求4所述的一种可估计未知有效声速的水下单信标定位方法,其特征在于,所述D步骤中,有效声速的随机模型、函数模型以及预测模型建立方法为:
考虑到恶劣海况下有效声速不确定性的非Gauss性,将有效声速初始先验分布建模为Student’st分布:
其中:St(x|a,b,c)表示以a为均值,b为尺度参数,c为自由度,满足Student’st分布的随机变量x;为初始声速...
【专利技术属性】
技术研发人员:秦洪德,余相,朱仲本,邓忠超,万磊,田瑞菊,
申请(专利权)人:哈尔滨工程大学,
类型:发明
国别省市:黑龙;23
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。