一种抗直流偏置低温烧结铁氧体材料及其制备方法技术

技术编号:23187175 阅读:78 留言:0更新日期:2020-01-24 14:56
本发明专利技术属于电子陶瓷材料及其制备技术领域,具体为一种抗直流偏置低温烧结铁氧体材料及其制备方法。本发明专利技术首先在NiCuZn铁氧体材料的主配方设计上优化了Ni和Zn离子的比例;同时将主配方中Cu离子的含量优化确认为0.18,并引入0.05摩尔含量的Co离子的替代,以确保得到的材料能够较好的兼顾低温烧结、低损耗和较高起始磁导率等特性;并复合掺入了3种掺杂改性剂。最终制备的NiCuZn铁氧体材料以尖晶石NiCuZn铁氧体为主晶相,于900℃低温烧结,起始磁导率μ

【技术实现步骤摘要】
一种抗直流偏置低温烧结铁氧体材料及其制备方法
本专利技术属于电子陶瓷材料及其制备
,具体涉及一种具有高居里温度和良好的抗直流偏置特性的低温烧结NiCuZn铁氧体材料及其制备方法。
技术介绍
近年来,电子设备的便携化、多功能化和集成化的发展趋势,促使了叠层片式电感等无源元器件的快速发展。叠层片式电感除用于常规电感领域,实现小型化和片式化替代外,还广泛应用于低噪声放大器、开关电源等功率器件中。在这些领域,除了对电感要求其满足小型化和高性能化的同时,还需要在外加偏置电流的工作状态下具有高的稳定性和可靠性,特别是要求能承载的饱和电流(电感量下降到70%时能承载的最大电流)越大越好。为了提升片式电感的抗直流偏置特性,除了在电感的电路结构上再做优化外,最为关键是从材料创新改进上着手,提升片式电感所采用的低温烧结铁氧体材料的抗直流偏置特性,从而可以在相同的尺寸和结构下显著的提升片式电感可承载的饱和电流。
技术实现思路
针对上述存在问题或不足,为解决片式电感所采用的低温烧结铁氧体材料的抗直流偏置特性相对不足的问题,本专利技术提供了一种抗直流偏置低温烧结铁氧体材料,具有高居里温度。具体技术方案如下:一种抗直流偏置低温烧结(NiCuZn)铁氧体材料,其主相为尖晶石结构,分子结构表达式为Ni0.37-xZn0.40+xCu0.18Co0.05Fe1.96O4,0≤x≤0.03;基料为:分析纯的NiO、ZnO、CuO、Co2O3和Fe2O3按摩尔比NiO:ZnO:CuO:Co2O3:Fe2O3=(0.37-x):(0.40+x):0.18:0.025:0.98配料。掺杂剂为:基料重量百分比1~1.2wt%的BBSZ玻璃、2~2.5wt%的MgO以及0.1wt%的WO3。通过采取800℃的预烧温度,实现900℃低温烧结;起始磁导率μi为71~75,H70%为840~910A/m,相比常规的具有同等起始磁导率的低温烧结NiCuZn铁氧体材料H70%有超过30%以上的提升,居里温度也非常高,超过了350℃。上述抗直流偏置低温烧结(NiCuZn)铁氧体材料的制备方法,包括以下步骤:步骤一:以分析纯的NiO、ZnO、CuO、Co2O3、Fe2O3为初始原料,按摩尔比NiO:ZnO:CuO:Co2O3:Fe2O3=(0.37-x):(0.40+x):0.18:0.025:0.98的比例折算出NiO、ZnO、CuO、Co2O3、Fe2O3的质量,依次进行称料、混料、一次球磨后烘干,0≤x≤0.03;步骤二:将步骤一所得的一次球磨烘干料过筛后在坩埚中压实打孔,按3℃/分的升温速率升至800℃进行预烧,保温2~3小时,随炉冷却到室温得到预烧料;步骤三:将步骤二所得的预烧料从坩埚中取出后放入研钵中粉粹,并加入预烧料重量百分比:1~1.2wt%的BBSZ玻璃、2~2.5wt%的MgO以及0.1wt%的WO3三种掺杂剂后,共同在球磨机中进行二次球磨并烘干,二次球磨后粉料的平均粒度控制在1微米以下;步骤四:在步骤三得到的二次球磨烘干料中加入占其重量10%~15%的PVA溶液进行造粒并压制成圆环形;步骤五:将步骤四所得的样品放入烧结炉中,以2℃/分的升温速率升温至300℃保温1小时排水,然后再以2℃/分的升温速率升温至600℃保温1小时排胶,然后再以2℃/分的升温速率升温至900℃保温3~4小时,最后随炉冷却至室温得到所述具有高居里温度的抗直流偏置低温烧结(NiCuZn)铁氧体材料。作为一种优选,所述步骤三中加入的掺杂剂占比为,预烧料重量百分比的1wt%BBSZ玻璃、2.5wt%MgO以及0.1wt%的WO3。上述步骤三中采用的BBSZ玻璃制备方法如下:取分析纯的H3BO3、Bi2O3、SiO2和ZnO按照27%Bi2O3-35%H3BO3-6%SiO2-32%ZnO的摩尔比称料,混合均匀。以去离子水作为润滑剂,在行星式球磨机球磨中球磨6小时后取出干燥。然后放在烧结炉中以2℃/min的升温速率升温至1000℃,在1000℃保温2个小时,然后直接从炉子中取出倒入去离子水中实现快淬,最后将快淬后的玻璃粉烘干,碾磨细即可备用。本专利技术首先在NiCuZn铁氧体材料的主配方设计上优化了Ni和Zn离子的比例,确保最终铁氧体材料的起始磁导率适中,且具有很高的居里温度。同时将主配方中Cu离子的含量优化确认为0.18,并引入0.05摩尔含量的Co离子的替代,可以确保得到的材料能够较好的兼顾低温烧结、低损耗和较高起始磁导率等特性。并且,在材料掺杂改性过程中,同时复合掺入了3种掺杂改性剂,分别发挥不同的作用:其中1~1.2wt%BBSZ玻璃掺入的主要目的一是促进铁氧体的低温烧结,二是包覆MgO掺杂剂,一起沉积在晶界,拓宽铁氧体晶界,提升铁氧体的矫顽场大小。掺杂2~2.5wt%MgO的主要目的主要是跟BBSZ一起沉积在晶界拓宽晶界宽度,提高铁氧体材料的矫顽场,进而有效提升铁氧体的抗直流偏置特性。与其它的晶界掺杂剂相比,MgO和BBSZ包覆组合的掺杂方式在提升铁氧体抗直流偏置特性的同时对铁氧体磁导率下降程度的影响相对较小,因此在获得相同铁氧体起始磁导率的同时,可以在铁氧体配方设计中适当降低Zn离子的含量,有利于提升铁氧体材料的居里温度,进而提高铁氧体材料和相应片式电感的温度稳定性。而掺杂0.1wt%的WO3的目的则是有利于均匀化材料微观形貌,提升铁氧体材料磁导率,从而也有利于在获得相同磁导率的前提下降低原始材料配方中Zn的含量,提升铁氧体的居里温度。综上所述,本专利技术提供了一种以尖晶石NiCuZn铁氧体为主晶相组成的,具有高居里温度和良好的抗直流偏置特性的低温烧结铁氧体材料及其制备方法,可实现900℃低温烧结,制备的低温烧结铁氧体材料起始磁导率μi为71~75,其H70%(当铁氧体磁芯上承载直流偏置磁场使得其增量磁导率下降到其起始磁导率的70%时所对应的偏置磁场的大小称为H70%,是工程应用上衡量铁氧体材料抗直流偏置特性的主要技术指标)可达840~910A/m,相比常规的具有同等起始磁导率的低温烧结NiCuZn铁氧体材料H70%有超过30%以上的提升。基于该材料研制的叠层片式电感器件不仅可承受更大的直流偏置磁场的叠加,而且也可用在更大功率的应用场合同时。同时该低温烧结铁氧体材料的居里温度也非常高,超过了350℃,基于该材料研发的片式电感也具有很好的温度稳定性。附图说明图1为本专利技术的制备工艺流程图。图2为实施例NiCuZn铁氧体材料的增量磁导率随偏置磁场变化的曲线。图3为实施例NiCuZn铁氧体磁芯绕制电感的感量随温度变化的曲线。具体实施方式下面结合实施例与附图对本专利技术做进一步的说明。高居里温度的抗直流偏置低温烧结NiCuZn铁氧体材料采用下述方法制备:步骤一:以分析纯的NiO、ZnO、CuO、Co2O3、Fe2O3为初始原料,按摩尔比NiO:ZnO:CuO:Co2O3:Fe2O3=0.37:0.40本文档来自技高网...

【技术保护点】
1.一种抗直流偏置低温烧结铁氧体材料,其特征在于:/n主相为尖晶石结构,分子结构表达式为Ni

【技术特征摘要】
1.一种抗直流偏置低温烧结铁氧体材料,其特征在于:
主相为尖晶石结构,分子结构表达式为Ni0.37-xZn0.40+xCu0.18Co0.05Fe1.96O4,0≤x≤0.03;
基料为:分析纯的NiO、ZnO、CuO、Co2O3和Fe2O3按摩尔比NiO:ZnO:CuO:Co2O3:Fe2O3=(0.37-x):(0.40+x):0.18:0.025:0.98配料;掺杂剂为:基料重量百分比1~1.2wt%的BBSZ玻璃、2~2.5wt%的MgO以及0.1wt%的WO3。
800℃预烧,900℃低温烧结;起始磁导率μi为71~75,H70%为840~910A/m,居里温度超过350℃。


2.如权利要求1所述抗直流偏置低温烧结铁氧体材料的制备方法,包括以下步骤:
步骤一:以分析纯的NiO、ZnO、CuO、Co2O3、Fe2O3为初始原料,按摩尔比NiO:ZnO:CuO:Co2O3:Fe2O3=(0.37-x):(0.40+x):0.18:0.025:0.98的比例折算出NiO、ZnO、CuO、Co2O3、Fe2O3的质量,依次进行称料、混料、一次球磨后烘干,0≤x≤0.03;
步骤二:将步骤一所得的一次球磨烘干料过筛后在坩埚中压实打孔,按3℃/分的升温速率升至800℃进行预烧,保温2~3小时,随炉冷却到室温得到预烧料;
步骤三:将步骤二所得的预烧料从坩埚中取出后放入研钵中粉粹,并加入预烧料重量百分比:1~1...

【专利技术属性】
技术研发人员:苏桦钟茂峰唐晓莉李元勋荆玉兰
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1