一种答案获取的方法及装置制造方法及图纸

技术编号:21548121 阅读:44 留言:0更新日期:2019-07-06 21:34
本申请提供一种答案获取的方法及装置,所述方法包括:将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集中每个句子对应的句向量以及每个句子中的词单元对应的第一词向量;根据每个句子的句向量以及每个词单元的第一词向量,得到每个句子中的每个词单元对应的第二词向量;根据每个句子中的每个词单元对应的第二词向量,获得答案获取模型输出的每个词单元作为问题对应的答案开始位置以及答案结束位置的概率;根据每个词单元作为问题对应的答案开始位置以及答案结束位置的概率,确定问题对应的答案,从而从句子和词单元两个维度确定问题对应的答案,从而提高模型获取答案的效果。

A Method and Device for Obtaining Answers

【技术实现步骤摘要】
一种答案获取的方法及装置
本申请涉及神经网络模型
,特别涉及一种答案获取的方法及装置、计算设备、存储介质和芯片。
技术介绍
2018年10月,谷歌的人工智能团队介绍了一种预训练模型——BERT模型(BidirectionalEncoderRepresentationfromTransformers,双向注意力神经网络模型),被认为是自然语言翻译领域的极大突破。该模型通过左、右两侧上下文来预测当前词和通过当前句子预测下一个句子。图1为BERT模型的架构示意图。该模型包括12个堆栈层,该12个堆栈层依次连接。每个堆栈层中还包括:自注意力层、第一规范层、前馈层以及第二规范层。将文章和问题构成的文本输入至文本嵌入层,得到文本向量,然后将文本向量输入至第1个堆栈层,将第1个堆栈层的输出向量输入至第2个堆栈层……依次类推,最终得到最后一个堆栈层的输出向量。将最后一个堆栈层的输出向量作为每个词单元的表示向量输入至前馈层进行处理,得到每个词单元作为答案开始位置与答案结束位置的概率。可见,对于阅读理解与问答任务,BERT模型通过拼接问题与文章,利用注意力机制获取文章信息以及问题与文章之间的相互依本文档来自技高网...

【技术保护点】
1.一种答案获取的方法,其特征在于,包括:将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集中每个句子对应的句向量以及每个句子中的词单元对应的第一词向量;根据每个句子的句向量以及每个词单元的第一词向量,得到每个句子中的每个词单元对应的第二词向量;根据每个句子中的每个词单元对应的第二词向量,获得答案获取模型输出的每个词单元作为问题对应的答案开始位置以及答案结束位置的概率;根据每个词单元作为问题对应的答案开始位置以及答案结束位置的概率,确定所述问题对应的答案。

【技术特征摘要】
1.一种答案获取的方法,其特征在于,包括:将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集中每个句子对应的句向量以及每个句子中的词单元对应的第一词向量;根据每个句子的句向量以及每个词单元的第一词向量,得到每个句子中的每个词单元对应的第二词向量;根据每个句子中的每个词单元对应的第二词向量,获得答案获取模型输出的每个词单元作为问题对应的答案开始位置以及答案结束位置的概率;根据每个词单元作为问题对应的答案开始位置以及答案结束位置的概率,确定所述问题对应的答案。2.如权利要求1所述的答案获取的方法,其特征在于,将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集中每个句子对应的句向量中以及每个句子中的词单元对应的第一词向量,包括:将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集中每个词单元的第一词向量;对每个句子对应的词单元的第一词向量进行线性映射,然后进行归一化变换,得到每个句子对应的词单元的第一词向量对应的权重;根据每个句子对应的词单元的第一词向量对应的权重,将每个句子对应的词单元的第一词向量合成为该句子对应的句向量。3.如权利要求1所述的答案获取的方法,其特征在于,根据每个句子的句向量以及每个词单元的第一词向量,得到每个句子中的每个词单元对应的第二词向量,包括:将每个句子对应的句向量分别与该句子中的每个第一词向量相加,得到每个句子中的每个词单元对应的第二词向量。4.如权利要求1所述的答案获取的方法,其特征在于,根据每个句子中的每个词单元对应的第二词向量,获得答案获取模型输出的每个词单元作为问题对应的答案开始位置以及答案结束位置的概率,包括:将每个句子中的每个词单元对应的第二词向量进行线性映射以及非线性变换,分别获得每个词单元作为问题对应的答案开始位置以及答案结束位置的概率。5.如权利要求2所述的答案获取的方法,其特征在于,所述答案获取模型包括嵌入层和n个堆栈层;将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集中每个词单元的第一词向量,包括:S11、将目标文本和问题作为输入集输入至嵌入层,得到对应的输入向量;S12、将所述输入向量输入至第1个堆栈层,得到第1个堆栈层的输出向量;S13、将第i个堆栈层的输出向量输入至第i+1个堆栈层,得到第i+1个堆栈层的输出向量,其中,1≤i≤n-1;S14、判断i是否等于n-1,若是,执行步骤S15,若否,执行步骤S13;S15、将第n个堆栈层的输出向量作为所述输入集中每个词单元的第一词向量输出。6.一种答案获取的装置,其特征在于,所述装置包括:句向量处理模块,被配置为将目标文本和问题作为输入集输入至答案获取模型,得到所述输入集...

【专利技术属性】
技术研发人员:李长亮王献唐剑波李天阳
申请(专利权)人:北京金山数字娱乐科技有限公司成都金山互动娱乐科技有限公司
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1