一种固定翼飞机阵风响应建模分析方法技术

技术编号:21273699 阅读:35 留言:0更新日期:2019-06-06 08:04
本发明专利技术公开了一种固定翼飞机阵风响应建模分析方法,该方法通过气动力模型降阶,减少了模型阶数,该建模分析方法相较传统方法具有较高的精度,且计算量小,适用于工程分析。该模型与飞机结构模型、大气模型和舵机模型等耦合后得到阶数较低的阵风响应模型,便于阵风响应分析和阵风减缓控制设计。

【技术实现步骤摘要】
一种固定翼飞机阵风响应建模分析方法
本专利技术属于飞行器阵风减缓控制
,尤其涉及一种固定翼飞机阵风响应建模分析方法。
技术介绍
大气中存在复杂的气流运动,固定翼飞机在其中飞行时易受这些扰动的影响。其中垂直阵风不仅会使飞机产生较大的过载,产生较大的动态结构载荷,加快结构疲劳破坏,而且会降低飞机飞行品质,不利于机载设备的正常运行。因此,进行飞机设计时,有必要建立飞机的阵风响应模型,分析其阵风响应特性,以便进行阵风减缓控制设计。克莱菲尔德大学的GuoShijun和北航李道春团队研究过一种被动阵风减缓装置。该装置是较短的一截翼段,由一根弹性轴与翼梢结构连接。弹性轴位于翼段的压心前,可以降低阵风引起的气动载荷,达到阵风减缓的效果。建立阵风响应模型时需考虑飞机遭遇阵风时受到非定常气动力。传统采用涡格法计算机翼所受的气动力,该方法计算量相对较小,但精度不高。计算流体力学(CFD)方法可以提供较高的精度,但计算时间很长,而且自由度过于庞大,难以用于阵风减缓控制设计。此外,由于翼尖被动阵风减缓装置的引入使翼梢处的流动更为复杂,更加降低了涡格法等传统方法的精度。
技术实现思路
本专利技术提出了一种固定翼飞机阵风响应建模分析方法,该模型相较传统方法具有较高的精度,且计算量小,适用于工程分析。该气动力模型阶数较小,与飞机结构模型、大气模型和舵机模型等耦合后得到阶数较低的阵风响应模型,便于阵风响应分析和阵风减缓控制设计,具体步骤如下:1)针对带被动阵风减缓装置的固定翼飞机,进行有限元分析,提取飞机结构的前几阶模态,这些模态代表飞机结构的动力学响应,有效降低结构模型阶数。2)分析翼尖装置的结构模态,使用正交分解的方法将翼尖装置的结构模态和机翼的结构模态解耦,得到翼尖装置的转动模态。3)定义单位阶跃输入为:用多项式分别拟合各阶模态的变形,将变形量插值到气动网格节点上,通过动网格方法,使用CFD计算所述结构各模态单位阶跃输入下的各时间步的非定常广义气动力,记为y(n)。4)用一阶的Volterra级数表示非定常广义气动力其中h(k),k=1,2,…,K是Volterra级数的核函数,由下式得到:5)构造Hankel矩阵:其中,n为大于0的整数,r和s用来确定矩阵的大小,r表示该矩阵的行数,s表示列数,该矩阵为对称矩阵,r与s满足n+s+r-2≤K。6)对上述Hankel矩阵进行奇异值分解得到构造出广义非定常气动力的状态方程:其中,xa是该状态空间的状态变量,u为该状态空间的输入,该输入为结构的形变量,即广义位移,Fa为系统的输出量,即为广义气动力。其中,与定义如下:Ip与Im是维度为p与m的单位方阵,0p与0m是维度为p与m的零方阵,与的维度分别是p×rp,m×sm。7)引入1-cos阵风模型,飞机飞行动力学模型,结构动力学模型,并与步骤6)中的广义非定常气动力模型耦合,得到带有被动阵风减缓装置的固定翼飞机阵风响应模型,使用该阵风响应模型进行阵风响应分析,计算各阶结构模态在阵风作用下的响应。进一步的,步骤7)中的飞机的结构动力学模型为:其中,M1为飞机的广义质量,C1为飞机的广义阻尼,K1为飞机的广义刚度,M2为被动翼尖广义质量,C2为飞机的广义阻尼,K2为飞机的广义刚度,A1为舵面的气动力矩阵,A12为飞机运动作用在被动翼尖气动力矩阵,A2为被动翼尖运动的气动力矩阵,xd为结构广义坐标,为结构广义坐标对时间求导,为结构广义坐标对时间的二阶导。本专利技术与现有技术相比所具有的有益效果:1.降阶的气动模型具有较高的精度,且计算量小,便于被动阵风减缓装置的设计分析。2.该方法考虑了翼尖被动阵风减缓装置对气动力的影响,计入了该装置与机翼互相的气动干扰效应,计算精度较高。3.此方法得到的模型阶数较低,可直接用于阵风减缓控制的设计。附图说明图1是本专利技术建立阵风响应模型流程图。图2是本专利技术带有翼尖被动阵风减缓装置的固定翼飞机示意图。图3是本专利技术具体实施方式中非定常气动力降阶模型计算结果与CFD计算结果的对比图;(a)模态1,(b)模态2,(c)模态3,(d)模态4。图4是本专利技术具体实施方式中1-cos阵风作用下机翼的四阶模态的广义位移响应。具体实施方式为了使本专利技术的目的、技术方案及优点更加清楚明白,以下结合实施例,对本专利技术进行进一步详细说明,应当理解,此处所描述的具体实施例仅仅用以解释本专利技术,并不用于限定本专利技术。一种固定翼飞机阵风响应建模分析方法,包括以下步骤:1)使用有限元方法计算带有被动阵风减缓装置的机翼的前四阶模态,用广义坐标描述机翼的变形。2)分析翼尖装置的结构模态,使用正交分解的方法将翼尖装置的结构模态和机翼的结构模态解耦,得到翼尖装置的转动模态。3)定义单位阶跃输入为:以机翼中间面的变形近似其上下表面的变形,用多项式分别拟合各阶阶模态的变形,便于将变形量插值到气动网格节点上。通过动网格方法,使用CFD计算上述结构各模态单位阶跃输入下的各时间步的非定常广义气动力,记为y(n)。4)用一阶的Volterra级数表示非定常广义气动力其中h(k),k=1,2,…,K是Volterra级数的核函数,由下式得到:5)构造Hankel矩阵:其中,n为大于0的整数,r和s用来确定矩阵的大小。r表示该矩阵的行数,s表示列数。该矩阵为对称矩阵。r与s可以任意选取,只需满足n+s+r-2≤K。6)对上述Hankel矩阵进行奇异值分解得到构造出广义非定常气动力的状态方程:其中,xa是该状态空间的状态变量,u为该状态空间的输入。在气动弹性问题的研究中,主要考虑的是气动力与结构的弹性力的耦合效果,所以,这里的输入为结构的形变量,即广义位移。Fa为系统的输出量,即为广义气动力。其中,与定义如下:Ip与Im是维度为p与m的单位方阵。0p与0m是维度为p与m的零方阵。与的维度分别是p×rp,m×sm。选取经典的AGARD445.6机翼作为算例验证该降阶的非定常气动力模型,结果见附图3。7)建立飞机的结构动力学模型:其中,M1为飞机的广义质量,C1为飞机的广义阻尼,K1为飞机的广义刚度,M2为被动翼尖广义质量,C2为飞机的广义阻尼,K2为飞机的广义刚度,A1为舵面的气动力矩阵,A12为飞机运动作用在被动翼尖气动力矩阵,A2为被动翼尖运动的气动力矩阵,xd为结构广义坐标,为结构广义坐标对时间求导,为结构广义坐标对时间的二阶导。将降阶的气动力模型与1-cos阵风模型、飞机飞行动力学模型和结构动力学模型耦合,得到带有被动阵风减缓装置的固定翼飞机阵风响应模型,进行阵风响应计算分析。选取1-cos阵风速度为5m/s,尺度为13.5m,计算得到机翼的四阶模态的广义位移响应见附图4。尽管为了说明的目的,已描述了本专利技术的示例性实施方式,但是本领域的技术人员将理解,不脱离所附权利要求中公开的专利技术的范围和精神的情况下,可以在形式和细节上进行各种修改、添加和替换等的改变,而所有这些改变都应属于本专利技术所附权利要求的保护范围,并且本专利技术要求保护的产品各个部门和方法中的各个步骤,可以以任意组合的形式组合在一起。因此,对本专利技术中所公开的实施方式的描述并非为了限制本专利技术的范围,而是用于描述本专利技术。相应地,本专利技术的范围不受以上实施方式的限制,而是由权利要求或其等同物进行限定。本文档来自技高网...

【技术保护点】
1.一种固定翼飞机阵风响应建模分析方法,具体步骤如下:1)针对带被动阵风减缓装置的固定翼飞机,进行有限元分析,提取飞机结构的前几阶模态,这些模态代表飞机结构的动力学响应,有效降低结构模型阶数;2)分析翼尖装置的结构模态,使用正交分解的方法将翼尖装置的结构模态和机翼的结构模态解耦,得到翼尖装置的转动模态;3)定义单位阶跃输入为:

【技术特征摘要】
1.一种固定翼飞机阵风响应建模分析方法,具体步骤如下:1)针对带被动阵风减缓装置的固定翼飞机,进行有限元分析,提取飞机结构的前几阶模态,这些模态代表飞机结构的动力学响应,有效降低结构模型阶数;2)分析翼尖装置的结构模态,使用正交分解的方法将翼尖装置的结构模态和机翼的结构模态解耦,得到翼尖装置的转动模态;3)定义单位阶跃输入为:用多项式分别拟合各阶模态的变形,将变形量插值到气动网格节点上,通过动网格方法,使用CFD计算所述结构各模态单位阶跃输入下的各时间步的非定常广义气动力,记为y(n);4)用一阶的Volterra级数表示非定常广义气动力其中h(k),k=1,2,…,K是Volterra级数的核函数,由下式得到:5)构造Hankel矩阵:其中,n为大于0的整数,r和s用来确定矩阵的大小,r表示该矩阵的行数,s表示列数,该矩阵为对称矩阵,r与s满足n+s+r-2≤K;6)对上述Hankel矩阵进行奇异值分解得到构造出广义非定常气动力的状态方程:其中,...

【专利技术属性】
技术研发人员:龚喜盈王丹李道春田茂江向锦武张琳王安文李凡凡
申请(专利权)人:西安爱生技术集团公司北京航空航天大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1