一种多用途全奥氏体低密度钢及制备方法技术

技术编号:20887321 阅读:83 留言:0更新日期:2019-04-17 13:45
一种多用途全奥氏体低密度钢及制备方法,属于金属材料及其制备技术领域。化学成分重量百分数为:C 0.40%~0.90%、Mn 15.0%~25.0%、Al 3.0%~6.0%、Mo 0.3%~0.80%、V 0.3%~0.90%、Ti 0.01%~0.04%、Nb 0.02%~0.10%、Si≤0.3%、P≤0.03%、S≤0.002%、N≤0.006%(60ppm)。余量为Fe及不可避免杂质。其密度为7.0~7.4g/cm

【技术实现步骤摘要】
一种多用途全奥氏体低密度钢及制备方法
本专利技术属于金属材料及其制备
,尤其涉及一种多用途全奥氏体低密度钢及制备方法。
技术介绍
降低能耗、减少环境污染以及节约有限资源是当今人们所面临的一个十分重要而紧迫的问题,减轻汽车自重是提高汽车的燃油经济性、节约能耗的重要措施之一。目前,国内外开发研究汽车轻量化项目,多开发高强或超高强钢板,通过降低使用钢板厚度降低汽车重量。应用高强钢和先进高强钢替代传统低强度级别钢材,可以提高汽车用钢的比强度(强度与密度之比)和减小结构件的厚度,实现汽车结构轻量化。提高汽车用钢比强度的另一种有效途径是在维持上述高强钢优良力学性能的基础上降低钢材的密度。因此,开发低密度、高强韧性钢板是为了应对进一步实现汽车轻量化的迫切需求。低密度、高强韧钢是采用合理的成分设计,通常具有一定的Mn、Al、C合金元素含量,获得奥氏体或奥氏体+铁素体双相组织,具有较高的强度、韧性、高的加工硬化率与无屈服现象,是一种具有高强韧性、成形性好的汽车用钢,较传统钢铁材料,其高强度、低密度特点具备更大的开发前景与优势。目前开发的先进汽车用钢材料包括TRIP、TWIP钢以及高锰、高铝钢,均保证了钢板的强韧性及抗冲击性能,但是考虑到目前钢铁生产成本和工艺可行性,及汽车用钢的焊接性能,发展趋势倾向于开发中锰高强钢,同时添加一定的轻质元素,有效降低钢板密度。通过控制合理的合金成分及生产工艺,控制钢中奥氏体组织含量及分布,可以获得更高强韧性的低密度汽车用钢。低密度钢的主要设计思路是,通过添Al元素降低钢的密度,再通过添加Mn,C等其他合金元素进行成分优化,结合合理的制备工艺,得到低密度的高强钢。在已有的材料及制造专利技术中,大部分专利材料均为铁素体和奥氏体的双相组织。CN104928569A和CN106011652B公开了一种800MPa级高延展性轻质钢及其制备方法,该材料为中碳、中锰的低密度钢,其强度仅有800MPa,并且该方法生产工序较为复杂。CN106399858A公开了一种高强度Fe-Mn-Al-C系低密度铸钢及其制备方法,虽然抗拉强度达到1400MPa级别,但其塑性差,由于添加了大量的Mn、Ti、Al、Cr,成本过高不适合工业生产和推广应用。CN108642403A公开了一种780MPa级的低密度钢,由于C含量过高且合金成分的比例设计存在一定问题,使得强度较低,并且无法得到全奥氏体组织。CN104674109A和CN103667883B公开了一种超高Al的低密度钢,密度可降低至6.65~6.80g/cm3,虽然强塑积能达到40GPa·%左右,但强度仅能达到900MPa级别,且依然为α+γ双相组织。CN102690938B公开了一种超低C、超高Mn的含Al钢,通过中频感应炉和电渣重熔的制造方法,获得全奥氏体型低密度钢,虽然强塑积能达到52.8GPa·%,但由于含Al量仅为1.85%,预测钢的密度达到7.5g/cm3,并且强度仅为700MPa,因此基本无法实现对现有车辆、建筑及工程机械相关承载结构件的减重。可见,目前主要采用的成分体系为Fe-Mn-Al-C系,材料抗拉强度只能达到1200MPa,密度为7.0g/cm3,但强塑性不足,难以达到35GPa·%以上。进一步提高强度是Fe-Mn-Al-C系低密度钢面临的一个主要问题。一种解决途径是添加其他合金元素,利用固溶强化或析出强化提高强度。本专利技术钢是一种VC、(V,Mo)C纳米析出相(1~10nm为主)的强超高强度钢,主要是依靠VC、(V,Mo)C纳米析出相来提高钢的抗拉强度,使其抗拉强度达1300MPa以上,密度可到7.0g/cm3,强塑积可达到40GPa·%。
技术实现思路
本专利技术的目的在于提供一种多用途全奥氏体低密度钢及制备方法,其密度为7.0~7.4g/cm3,组织类型为全奥氏体+纳米级VC和MoC析出相,抗拉强度可达到1300MPa,屈服强度可达到1100MPa,延伸率可达到25%,面缩率可达到45%,-40℃V缺口低温冲击韧性可达到35J,强塑积可达40GPa·%。并且本专利技术钢的制备方法多样且合理,可适用于多种强度级别的应用环境,应用范围广,可用于汽车、建筑、工程机械等多种领域。本专利技术的多用途全奥氏体低密度钢的成分重量百分数为:C0.40%~0.90%、Mn15.0%~25.0%、Al3.0%~6.0%、Mo0.3%~0.80%、V0.3%~0.90%、Ti0.01%~0.04%、Nb0.02%~0.10%、Si≤0.3%、P≤0.03%、S≤0.002%、N≤0.006%(60ppm)。余量为Fe及不可避免杂质的元素配制原料。本专利技术的钢锰与铝的质量分数比Mn/Al≥4.0,0.5≤(1.5C+0.1Mn)/Al≤1,2≤(V+Mo+Nb+Ti)/C≤3。各成分在本专利钢的作用如下:P:P是固溶强化元素;但是P会增加钢的冷脆性,降低钢的塑性,使冷弯性能和焊接性能变坏。因此,限定钢中P含量≤0.03%。S:S使钢产生热脆性,降低钢的延展性和韧性,使焊接性能变坏,降低钢的耐蚀性。因此,限定S含量≤0.002%。N:N与Al形成AlN,凝固过程中可细化柱状枝晶,但N含量过高时,形成的粗大AlN颗粒影响钢板的延展性。另外,过量AlN会降低钢的热塑性。因此,一般限定N含量≤0.006%,在高品质要求中将限定N含量≤0.004%(40ppm)。Si:Si虽然可提高钢的强度和残余奥氏体的力学稳定性,但Si是铁素体固溶强化元素,因此本专利钢中不添加Si,限定Si含量≤0.03%。C:C对阻碍奥氏体组织在形变时发生马氏体的相变,稳定奥氏体相有一定的作用,促进形成单相的奥氏体;C可以固溶到钢的基体中形成固溶强化作用,从而提高钢的强度。但对于A1和C合金化的高锰钢,在500~750℃时效时,通常会产生κ相,即(Fe,Mn)3AlCx,κ相的产生会损害钢的冲击韧性从而导致脆性断裂,为了避免κ相的产生,碳的含量应限制在0.90%以内。不过,需要通过充分的碳原子固溶强化,同时兼顾Mo、V微合金化后,析出相形成所需的C原子。因此设计C含量范围为0.40~0.90%。Mn:Mn元素可以扩大奥氏体区,也可以提高奥氏体层错能,进而抑制奥氏体向马氏体转变。Mn的含量低于15%,会形成α’马氏体从而恶化成形性。Mn在奥氏体组织可使钢保持较高的加工硬化率,改善塑性,添加Mn有利于获得良好的强塑性配合。但随M含量增加,钢坯在快速加热和冷却过程中的开裂倾向增大。因此,本专利技术的Mn含量为15-25%。Al:Al作为轻质化元素,加入3%即可将钢的密度降低至7.4g/cm3。Al可提高层错能,抑制奥氏体向马氏体转变,有利于形变孪晶的形成。Al能够使高锰钢的动态再结晶延迟发生,从而细化奥氏体晶粒,还能够增加应变硬化速率和低温韧性。Al有脱氧、抗氧化、抗腐蚀,同时还能够形成致密氧化层,防止氢的渗透,显著改善TWIP钢的氢致敏感性。不过,过量的铝会造成铸造缺陷,降低焊缝金属抗热裂能力。综合考虑以上因素,试验钢中Al含量控制在3.0~6.0%。Mo:Mo在钢中存在于固溶体中或形成碳化物,与C的亲合力较强。当钢中有较高V时,Mo的加入有利于形成更多细小稳定的MoC和(V,Mo)C碳化物,替代Fe3C析出,本文档来自技高网
...

【技术保护点】
1.一种多用途全奥氏体低密度钢,其特征在于,该钢化学成分重量百分数为:C 0.40%~0.90%、Mn 15.0%~25.0%、Al 3.0%~6.0%、Mo 0.3%~0.80%、V 0.3%~0.90%、Ti 0.01%~0.04%、Nb 0.02%~0.10%、Si≤0.3%、P≤0.03%、S≤0.002%、N≤0.006%;余量为Fe及不可避免杂质的元素。

【技术特征摘要】
1.一种多用途全奥氏体低密度钢,其特征在于,该钢化学成分重量百分数为:C0.40%~0.90%、Mn15.0%~25.0%、Al3.0%~6.0%、Mo0.3%~0.80%、V0.3%~0.90%、Ti0.01%~0.04%、Nb0.02%~0.10%、Si≤0.3%、P≤0.03%、S≤0.002%、N≤0.006%;余量为Fe及不可避免杂质的元素。2.根据权利要求1所述的多用途全奥氏体低密度钢,其特征在于,该钢的密度为7.0~7.4g/cm3,组织类型为全奥氏体+纳米级VC和MoC析出相,抗拉强度可达到1300MPa,屈服强度可达到1100MPa,延伸率可达到25%,面缩率可达到45%,-40℃V缺口低温冲击韧性可达到35J;适用于汽车、建筑、工程机械领域。3.根据权利要求1或2所述的多用途全奥氏体低密度钢,其特征在于,锰与铝的质量分数比Mn/Al≥4.0,0.5≤(1.5C+0.1Mn)/Al≤1,2≤(V+Mo+Nb+Ti)/C≤3。4.一种权利要求1-3任意一项所述的多用途全奥氏体低密度钢的制备方法,其特征在于,工艺步骤及控制的技术参数如下:1)将配制好的高纯铁、电解锰、钼铁、铌铁、钒铁、铝颗粒、增碳剂、高纯钛等原料放入真空熔炼炉中;2)将熔炼炉温度设置为1600-1680℃,真空度达到小于40Pa;3)加热使得原料完全熔融且熔池中不再有气泡溢出后,在真空度小于2Pa条件下钢液保温35分钟至60分钟;4)钢液出钢温度为1430~1480℃,采用经过二氧化碳硬化处理和内壁涂刷耐火涂料的水玻璃砂型进行真空浇注;5)空冷至室温,开模具制得低密度钢的铸锭,随后进行均匀化热处理;其中的铝颗粒的粒度要求范围为4~10目,增碳剂的具体要求为天然石墨、人造石墨或焦炭,均匀化热护理的温度为1180~1220℃,保温时间为1-5小时。5.根据权利要求4所述的方法,其特征在于,所述的多用途全奥氏体低密度钢的锻造开坯工艺:加热温度为1180℃~1220℃,保温时间为30min-60min,始锻温度1150~1180℃,终锻温度为950~1000℃,锻后空冷至室温。6.根据权利要求4所述的方法,其特征在于,所述的多用途全奥氏体低密度钢的热轧工艺:加热温度为1180℃~1200℃,保温时间为30min-60min,热轧轧制总压下量为85~95%。粗轧开轧温度为1150℃~1180℃,轧制...

【专利技术属性】
技术研发人员:时捷孙挺尉文超李晓源闫永明王毛球徐乐何肖飞杜玉婧
申请(专利权)人:钢铁研究总院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1