一种绝缘栅双极晶体管结温测量方法技术

技术编号:20795621 阅读:25 留言:0更新日期:2019-04-06 09:16
绝缘栅双极晶体管(简称IGBT)是将其内部电路通过外壳密封起来的一种关键部件。随着IGBT模块应用领域的不断扩大,其可靠性对于应用于各领域的功率变流器具有重要的影响。而研究其可靠性的重要手段就是要准确地获取IGBT模块的结温。因为IGBT模块是密封的,因此通常采用IGBT模块集电极和射极间的电压来间接获取。本发明专利技术提出了一种IGBT模块的精确结温测量技术方案,该方案是利用IGBT芯片随温度变化的工作特性,通过采用其集电极‑射极间电压这个电信号的方法,间接获取结温。该方案是一种基于功率半导体器件集电极‑射极电压的快速的、精确的结温测量方法,具有一定的通用性。

A Method for Measuring Junction Temperature of Insulated Gate Bipolar Transistors

Insulated gate bipolar transistor (IGBT) is a key component of its internal circuit sealed through the shell. With the expanding application of IGBT module, its reliability has an important impact on power converters applied in various fields. The important way to study its reliability is to obtain the junction temperature of IGBT module accurately. Because IGBT module is sealed, the voltage between collector and emitter of IGBT module is usually used to obtain indirectly. The invention provides an accurate junction temperature measurement technology scheme of IGBT module. The scheme utilizes the working characteristics of IGBT chip varying with temperature and obtains junction temperature indirectly by adopting the electric signal of collector-emitter voltage. This scheme is a fast and accurate junction temperature measurement method based on collector and emitter voltage of power semiconductor devices, and has certain generality.

【技术实现步骤摘要】
一种绝缘栅双极晶体管结温测量方法
本专利技术涉及一种功率半导体器件的精确结温测量技术,具体涉及一种电力电子系统中常用的绝缘栅双极晶体管(insulatedgatebipolartransistor,简称IGBT)中的内部芯片结温的测量方法,是一种基于功率半导体器件集电极-射极电压的快速的、精确的结温测量方法。
技术介绍
IGBT因其高效率被广泛应用于各行各业,如电动汽车、航天航空、铁路运输和新能源开发等。很多时候IGBT的工作环境都是相当严苛的,如温度高、电压高、电流大等等,这对IGBT模块的寿命具有很大影响。在严苛的工作环境下功率转换器是电气系统中最不可靠的部分。因为出故障的功率器件达不到系统的工作要求,功率器件的失效代价和维修费用是相当高的。为了避免造成重大安全事故,对其进行老化监测和寿命预测,提前预知IGBT模块的失效是十分有必要的。IGBT的结温是器件老化和寿命预测的重要参数之一。近年来有不少学者通过对IGBT模块的内部参数变化规律进行了研究,得到了两类结温测量方法。第一类是直接测量法,这类方法需要将IGBT模块打开进行测量,不适合在线监测;第二类方法是间接测量法,这类方法主要有以下两种典型的测量方案:一是基于导热模型的结温测量方案,二是基于热敏感参数的结温测量方案。利用导热模型进行结温测量的方法测量速度相对较慢,测量的精度有待提高、且受外界因素影响较大。利用热敏感参数的结温测量方法测量速度相对较快,但是测量准确度是需要研究的课题。本专利针对基于热敏感参数的结温测量方法的精度问题,提出了一种更加精确的IGBT结温测量方法,该方法的提出对IGBT模块的老化的监测和可靠性的预测具有重要的意义。
技术实现思路
本专利技术的目的是为了解决IGBT模块结温精确监测问题而提出的一种IGBT模块结温测量方法,该方法以IGBT模块的集电极-射极电压为测量变量,考虑IGBT模块内部电路结构和寄生参数的影响,提出一种准确的结温测量方案。该结温测量方案的准确度较高,具有可商业化利用的前景。此外,该测量方法是以电路理论为基础的,对于所有类型的功率半导体器件具有通用性。本专利技术提供的IGBT模块结温测量方法,主要内容如下:1.IGBT模块结温与IGBT模块内部芯片的集电极-射极电压的关系IGBT模块是全封闭的结构,内部的结温无法直接测取。本专利技术从IGBT模块内部半导体芯片工作性能与温度的关系为理论基础,通过功率半导体芯片的温度特性变化间接获取芯片的温度值。首先,IGBT模块内部IGBT芯片的工作特性受温度影响,但IGBT模块外部无法测得IGBT芯片直接输出的集电极-射极电压信号;其次,IGBT芯片输出的电压信号需要经过IGBT模块内部的电路结构输出到IGBT模块外部的端子上,中间需经过IGBT内部电路的传输;再次,为了确定不同温度值对IGBT芯片输出特性的影响,需要利用半导体参数分析仪结合探针台来标定温度与IGBT芯片输出电压的特性;最后,得到IGBT模块结温与IGBT内部芯片的集电极-射极电压的关系曲线簇或数据库。2.IGBT模块外部端子与内部芯片的集电极-射极电压的关系在第一部分得到温度与电压关系的曲线簇或数据库的基础上,需要研究基于外部端子测量得到的电压信号与芯片实际的电压信号之间的理论关系和电路模型。同时考虑到通常基于IGBT集电极-射极电压的结温测量方式是利用稳态的电压。首先,本专利技术提出将IGBT芯片、镀铝层、焊料层三部分等效看作一个电容,前提是IGBT芯片不能加任何驱动信号;其次,本专利技术利用精密阻抗分析仪测量IGBT模块外部端子集电极和射极之间的阻抗,然后获取包含谐振点的集电极和射极之间的阻抗曲线,在谐振点位置的阻抗值近似等于IGBT芯片外部的电阻值总和;最后,在测量集电极-射极电压的同时,将集电极电流和得到的电阻值进行相乘,在计算精确电压中将上述压降扣除,进而得到精确的IGBT芯片集电极和射极间电压的输出值。3.IGBT模块集电极-射极电压测量方案第一步和第二步已经构建了精确测量IGBT模块内部电压信号的方法,在该部分要将上述方法通过硬件电路来实现。首先,完成测量任务。集电极电流的测量可以用电力电子装置原有的传感器也可以新增传感器,本专利技术建议使用原有的传感器,以降低系统复杂性;集电极-射极间电压的测量可以利用主电路原有的电压和和电流传感器来实现测量,对于难以通过系统原有的传感器进行测量的物理量,可以考虑增加传感器的设置;IGBT模块内部阻抗的测量是根据IGBT模块内部的结构特点,构建相应的电路模型,进而实现寄生电阻的提取;IGBT芯片的温度特性测量需要利用半导体参数分析仪或探针台离线测取,并画出相应的曲线簇或构建相应的数据库。其次,测量所获取的集电极电流与IGBT模块内部的寄生电阻乘积得到误差压降;再次,测量所获取的集电极-射极电压减去寄生电阻产生的压降得到IGBT芯片的精确集电极-射极间电压;最后,将集电极-射极电压与离线测取的温度特性曲线或数据库进行查询比对,进而得到结温的精确值。附图说明图1为IGBT模块内部寄生参数模型;图2为IGBT模块层状结构示意图图3为IGBT模块三维仿真图图4为IGBT模块结温测量的流程图图5为三相两电平的功率变换器的IGBT模块集电极-射极电压构成与计算示意图各图中:1为IGBT模块,2为集电极阻抗Zc,3为IGBT芯片,4为射极阻抗ZE,5为镀铝层,6为焊料层I,7为DCB基片,8为焊料层II,9为铜底板,10为铜端子,11为键合线,12为铜层I,13为Al2O3层,14为铜层II具体实施方式下面结合附图和实例对本专利技术做进一步介绍:本专利技术实例为以三相两电平的功率变换器为例,实现一种精确的IGBT模块的结温测量方法,该测量方法的具体实施方式如下:第一步:完成IGBT模块内部IGBT芯片外的所有电路的寄生电阻的提取。图1给出了IGBT模块内部寄生参数的电路模型。该模型的电路包含了四个部分:门极部分、集电极部分、射极部分和IGBT/二极管芯片部分。通过IGBT模块集电极-射极间电压来获取结温的方法,是基于IGBT/二极管芯片部分的集电极-射极间电压来测取的。在集电极-射极回路主要集电极阻抗ZC、射极阻抗ZE和IGBT/二极管在不导通情况下的等效电容三个部分组成。ZC主要包括LC-cu、RC-cu、RC-solder,ZE主要包括多跟串并混联的Rwires和Lwires电路、RE-ce及LE-cu。整个集电极-射极回路比较复杂。但是如前所述,在通过IGBT芯片集电极-射极电压来获取结温的时候,用的电压是稳定状态的导通电压,因此,集电极-射极回路的阻抗可以用纯电阻来代替。这个电阻的提取可以通过集电极-射极间的阻抗谐振点来得到。具体方式是将IGBT模块的集电极和射极两端放入精密阻抗分析仪的夹具中,获取阻抗的特性曲线,通过寻找谐振点得到集电极和射极间的等效电阻。这个等效电阻的大小就是图5所示的Routside。第二步:测量得到IGBT芯片的集电极-射极电压。图5是图4中三相两电平功率变换器的第一个桥臂的上面IGBT管1导通,第二和第三个桥臂的下面IGBT管4和IGBT管6导通状态的等效电路。为了获取IGBT芯片的集电极-射极间电压,可以用下面公式进行计算:Vdc-VAB=IA(RC-本文档来自技高网
...

【技术保护点】
1.一种绝缘栅双极晶体管结温测量方法,其特征在于包括以下步骤:首先,完成测量任务:(1)测量集电极电流测量采用电力电子装置原有的传感器或新增传感器;(2)测量集电极‑射极间的电压测量采用电力电子装置原有的传感器或新增传感器;(3)测量IGBT模块内部阻抗根据IGBT模块内容的结构特点,构建相应的电路模型,进而实现寄生电阻的提取;(4)测量IGBT芯片的温度特性利用半导体参数分析仪或探针台离线测取,并画出相应的曲线簇或构建相应的数据库;其次,测量所获取的集电极电流与IGBT模块内部的寄生电阻乘积得到误差压降;再次,测量所获取的集电极‑射极电压减去寄生电阻产生的压降得到IGBT芯片的精确集电极‑射极间电压;最后,将集电极‑射极电压与离线测取的温度特性曲线或数据库进行查询比对,进而得到结温的精确值。

【技术特征摘要】
1.一种绝缘栅双极晶体管结温测量方法,其特征在于包括以下步骤:首先,完成测量任务:(1)测量集电极电流测量采用电力电子装置原有的传感器或新增传感器;(2)测量集电极-射极间的电压测量采用电力电子装置原有的传感器或新增传感器;(3)测量IGBT模块内部阻抗根据IGBT模块内容的结构特点,构建相应的电路模型,进而实现寄生电阻的提取;(4)测量IGBT芯片的温度特性利用半导体参数分析仪或探针台离线测取,并画出相应的曲线簇或构建相应的数据库;其次,测量所获取的集电极电流与IGBT模块内部的寄生电阻乘积得到误差压降;再次,测量所获取的集电极-射极电压减去寄生电阻产生的压降得到IGBT芯片...

【专利技术属性】
技术研发人员:胡静
申请(专利权)人:天津城建大学
类型:发明
国别省市:天津,12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1