经F-theta聚焦透镜后引起的畸变误差补偿方法技术

技术编号:20073593 阅读:44 留言:0更新日期:2019-01-15 00:13
本发明专利技术涉及一种经F‑theta聚焦透镜后引起的畸变误差补偿方法,针对由添加F‑theta聚焦透镜引起的桶形畸变,搭建测试光路,研究出光束从路径BDFG映射到坐标平面后GH的距离,通过此距离和BD的方向矢量(通过振镜偏转角以及几何关系计算)计算出G点的映射坐标值,进而可得到计算机数字控制量与振镜偏转角、映射坐标值的数学关系。利用模型找到计算机数字控制量与映射坐标值的关系,实际运用时通过修改输入计算机数字控制量即可达到补偿的效果。

A Compensation Method for Distortion Error Caused by F-theta Focusing Lens

The invention relates to a method for compensating the distortion error caused by the F theta focusing lens. Aiming at the barrel distortion caused by the addition of F theta focusing lens, a test optical path is constructed, and the distance of the beam from the path BDFG to GH behind the coordinate plane is studied. The mapping coordinate value of G point is calculated by the distance and the direction vector of BD (calculated by the deflection angle of the galvanometer and the geometric relationship). Then the mathematical relationship between the computer digital control quantity and the deflection angle of the galvanometer and the mapping coordinate value can be obtained. The relationship between computer digital control quantity and mapping coordinate value is found by using the model. In practical application, the compensation effect can be achieved by modifying the input computer digital control quantity.

【技术实现步骤摘要】
经F-theta聚焦透镜后引起的畸变误差补偿方法
本专利技术涉及一种误差处理技术,特别涉及一种经F-theta聚焦透镜后引起的畸变误差补偿方法。
技术介绍
近年来双振镜激光扫描加工技术越来越普及,其加工效率高,加工精度好,因此该技术越来越流行,为了达到更高的加工精度就必须研究此项技术的畸变误差。通过分析总结,我们发现显而易见的误差有映射关系非线性引起的误差,添加F-theta聚焦透镜引起的误差,以及扫描反射镜偏置引起的误差,经过实验发现F-theta聚焦透镜引起的误差比较明显。鉴于此有学者用f-θ数学模型近似的模拟出了映射坐标值与数字控制量的数学关系,经过实验发现此模型不能很适合的表达两者的数学关系;又有学者用OEF图形算法模拟出两者的数学关系,而此模型的不足之处在于其数学关系式与实验结果仍然有比较大的出入,而且有些待测物理量用现在的测量方法很难测得,基于以上两个数学模型,我们创建出了一种新的数学模型,优化了现有理论模型,使得误差减小并更贴近实验结果,能更清楚的表达整个光路在添加F-theta聚焦透镜后的光路变化过程。
技术实现思路
本专利技术是针对fθ模型和OEF图形算法的局限性,无法对F-theta聚焦透镜后的光路变化而引起的误差进行合理分析的问题,提出了一种经F-theta聚焦透镜后引起的畸变误差补偿方法,针对由添加F-theta聚焦透镜引起的桶形畸变,研究出光束从路径BDFG映射到坐标平面后GH的距离,通过此距离和BD的方向矢量(通过振镜偏转角以及几何关系计算)计算出G点的映射坐标值,进而可得到计算机数字控制量与振镜偏转角、映射坐标值的数学关系。本专利技术的技术方案为:一种经F-theta聚焦透镜后引起的畸变误差补偿方法,光束经过两个旋转的X振镜和Y振镜反射后,出射光进入F-theta聚焦透镜,X振镜和Y振镜由两个互相垂直的伺服电机带动旋转;Q-B-V为光束进入振镜的实际路径;S、U分别是映射坐标点V在Y、X轴上的映射;B、Q分别是Y、X振镜中心点;θx、θy分别表示X、Y振镜转动的角度;光束进入F-theta聚焦透镜后分别在F-theta聚焦透镜的左曲面和右曲面发生两次折射,B-D-F-G为光束进入-theta聚焦透镜的实际路径;在F-theta聚焦透镜中光路的高度对称性,设定二维光路中各个参数:入射光BD,出射光为FG,聚焦透镜横向中心线IC为Z轴;ID是左曲面曲率半径,N是ID延长线与聚焦透镜纵向中心线ON的交点;DE是入射点D到聚焦透镜横向中心线IC的距离;FM是出射点F到光屏轴GH的距离,GH为Y轴,像在光屏面XHY上;CF是右曲面曲率半径,P是CF延长线与聚焦透镜的交点;A是PD的延长线与聚焦透镜横向中心线IC的交点;FJ是出射点F到聚焦透镜横向中心线IC的距离;O、H分别是聚焦透镜和光屏轴GH的中心点,H在聚焦透镜横向中心线IC上;K、L为聚焦透镜的左曲面和右曲面中心点,K、L均在聚焦透镜横向中心线IC上;假设:经过两振镜后的出射光BD与Z轴的角度∠DBC=θ;激光束BD进入F-theta聚焦透镜的入射角∠BDI=α1;左曲面折射后的角度∠FDN=β1;右曲面入射角角度∠DFP=β2;右曲面折射后的角度∠GFC=α2左曲面入射点中心角∠DIK=φ1;右曲面入射点中心角∠FCK=φ2;像点(x,y)与H点连线与X轴正方向成的角度φ;DE距离h;GH距离R;已知物理量:f:OH距离,即F-theta聚焦透镜焦距;a:两面振镜中心点距离QB;b:Y振镜到F-theta聚焦透镜的距离BK;t:F-theta聚焦透镜厚度KL;n1:F-theta聚焦透镜外介质折射率;n2:F-theta聚焦透镜介质折射率;r1:F-theta聚焦透镜左曲面曲率半径ID;r2:F-theta聚焦透镜右曲面曲率半径CF;kx:控制X振镜的模拟电压与振镜转角的比例系数;ky:控制Y振镜的模拟电压与振镜转角的比例系数;Dx:控制X振镜转动的计算机数字控制量;Dy:控制Y振镜转动的计算机数字控制量;Vx:控制X振镜转动的模拟控制量;Vy:控制Y振镜转动的模拟控制量;未知参数的数学关系式:θx=kxVx;θy=kyVy;θx=(Dx/65535-0.5)*10*kx*π/180;θy=(Dy/65535-0.5)*10*ky*π/180;φ=tan-1(cos(2θx)*sin(2θy)/sin(2θx));θ=cos-1(cos2θx*cos2θy);φ1=sin-1(h/r1);α1=θ-φ1;β1=sin-1(sin(α1)*n1/n2);β2=sin-1(sin(β1+φ1)*(h*cot(β1+φ1)-h*cotθ+b+r2+t)/r2);α2=sin-1(sin(β2*n2/n1));φ2=β2-β1-φ1;x=R*cosφ;y=R*sinφ;F-theta聚焦透镜横截面是圆形的,即有效像平面是圆形;有效像平面是以H为中心R为半径的圆形,而像(x,y)坐标值通过R和φ的关系可求得,通过数学关系式,得到Dx、Dy与(x,y)相关的数学表达式,计算机上输入Dx、Dy计算出映射坐标值(x,y)的真实值,跟理论值对比找出畸变差值,通过修改输入的Dx、Dy进行差值补偿。本专利技术的有益效果在于:本专利技术经F-theta聚焦透镜后引起的畸变误差补偿方法,利用模型找到计算机数字控制量与映射坐标值的关系,实际运用时通过修改输入计算机数字控制量即可达到补偿的效果。附图说明图1是光束经过F-theta聚焦透镜的二维光路示意图;图2是光束经过振镜的光路示意图。具体实施方式图1所示为光束经过F-theta聚焦透镜的二维光路示意图,由于光路的高度对称性可知三维依然成立,光束在经过F-theta聚焦透镜时会因为两个曲面发生两次折射,此时的路径B-D-F-G为光束的实际路径;A是PD的延长线与聚焦透镜横向中心线IC(Z轴)的交点;ID是左曲面曲率半径,N是ID延长线与聚焦透镜纵向中心线ON的交点;DE是入射点D到聚焦透镜横向中心线IC的距离;FM是出射点F到光屏GH轴(Y轴)的距离,像在光屏面XHY上;CF是右曲面曲率半径,P是CF延长线与聚焦透镜的交点;FJ是出射点F到聚焦透镜横向中心线IC的距离;O、H分别是聚焦透镜和光屏轴GH的中心点,H在聚焦透镜横向中心线IC上;K、L为聚焦透镜的左曲面和右曲面中心点,K、L均在聚焦透镜横向中心线IC上。图2所示为光束经过振镜的光路示意图,Q-B-V即为光束的实际路径;S、U分别是映射坐标点V在Y、X轴上的映射;B、Q分别是Y、X振镜中心点;θx、θy分别表示X、Y振镜转动的角度。光束经过两个旋转的X振镜和Y振镜反射后,出射光进入F-theta聚焦透镜,X振镜和Y振镜由两个互相垂直的伺服电机带动旋转;推导出BD(光束经过两面振镜后)的矢量方向,如上图2所示,光线从-i(-1,0,0)方向入射,经过X振镜(X振镜偏转θx,则光线偏转2θx)反射后光线的单位方向矢量变为(-sin(2θx),cos(2θx),0),再经过Y振镜(Y振镜偏转θy,则光线偏转2θy)反射后光线的单位方向矢量变为BD(-sin(2θx),cos(2θx)×sin(2θy),cos(2θx)×cos(2θy))。而由于光束经过F-本文档来自技高网...

【技术保护点】
1.一种经F‑theta聚焦透镜后引起的畸变误差补偿方法,光束经过两个旋转的X振镜和Y振镜反射后,出射光进入F‑theta聚焦透镜,X振镜和Y振镜由两个互相垂直的伺服电机带动旋转;其特征在于,Q‑B‑V为光束进入振镜的实际路径;S、U分别是映射坐标点V在Y、X轴上的映射;B、Q分别是Y、X振镜中心点;θx、θy分别表示X、Y振镜转动的角度;光束进入F‑theta聚焦透镜后分别在F‑theta聚焦透镜的左曲面和右曲面发生两次折射,B‑D‑F‑G为光束进入‑theta聚焦透镜的实际路径;在F‑theta聚焦透镜中光路的高度对称性,设定二维光路中各个参数:入射光BD,出射光为FG,聚焦透镜横向中心线IC为Z轴;ID是左曲面曲率半径,N是ID延长线与聚焦透镜纵向中心线ON的交点;DE是入射点D到聚焦透镜横向中心线IC的距离;FM是出射点F到光屏轴GH的距离,GH为Y轴,像在光屏面XHY上;CF是右曲面曲率半径,P是CF延长线与聚焦透镜的交点;A是PD的延长线与聚焦透镜横向中心线IC的交点;FJ是出射点F到聚焦透镜横向中心线IC的距离;O、H分别是聚焦透镜和光屏轴GH的中心点,H在聚焦透镜横向中心线IC上;K、L为聚焦透镜的左曲面和右曲面中心点,K、L均在聚焦透镜横向中心线IC上;假设:经过两振镜后的出射光BD与Z轴的角度∠DBC=θ;激光束BD进入F‑theta聚焦透镜的入射角∠BDI=α1;左曲面折射后的角度∠FDN=β1;右曲面入射角角度∠DFP=β2;右曲面折射后的角度∠GFC=α2左曲面入射点中心角∠DIK=φ1;右曲面入射点中心角∠FCK=φ2;像点(x,y)与H点连线与X轴正方向成的角度φ;DE距离h;GH距离R;已知物理量:f:OH距离,即F‑theta聚焦透镜焦距;a:两面振镜中心点距离QB;b:Y振镜到F‑theta聚焦透镜的距离BK;t:F‑theta聚焦透镜厚度KL;n1:F‑theta聚焦透镜外介质折射率;n2:F‑theta聚焦透镜介质折射率;r1:F‑theta聚焦透镜左曲面曲率半径ID;r2:F‑theta聚焦透镜右曲面曲率半径CF;kx:控制X振镜的模拟电压与振镜转角的比例系数;ky:控制Y振镜的模拟电压与振镜转角的比例系数;Dx:控制X振镜转动的计算机数字控制量;Dy:控制Y振镜转动的计算机数字控制量;Vx:控制X振镜转动的模拟控制量;Vy:控制Y振镜转动的模拟控制量;未知参数的数学关系式:θx=kxVx;θy=kyVy;θx=(Dx/65535‑0.5)*10*kx*π/180;θy=(Dy/65535‑0.5)*10*ky*π/180;...

【技术特征摘要】
1.一种经F-theta聚焦透镜后引起的畸变误差补偿方法,光束经过两个旋转的X振镜和Y振镜反射后,出射光进入F-theta聚焦透镜,X振镜和Y振镜由两个互相垂直的伺服电机带动旋转;其特征在于,Q-B-V为光束进入振镜的实际路径;S、U分别是映射坐标点V在Y、X轴上的映射;B、Q分别是Y、X振镜中心点;θx、θy分别表示X、Y振镜转动的角度;光束进入F-theta聚焦透镜后分别在F-theta聚焦透镜的左曲面和右曲面发生两次折射,B-D-F-G为光束进入-theta聚焦透镜的实际路径;在F-theta聚焦透镜中光路的高度对称性,设定二维光路中各个参数:入射光BD,出射光为FG,聚焦透镜横向中心线IC为Z轴;ID是左曲面曲率半径,N是ID延长线与聚焦透镜纵向中心线ON的交点;DE是入射点D到聚焦透镜横向中心线IC的距离;FM是出射点F到光屏轴GH的距离,GH为Y轴,像在光屏面XHY上;CF是右曲面曲率半径,P是CF延长线与聚焦透镜的交点;A是PD的延长线与聚焦透镜横向中心线IC的交点;FJ是出射点F到聚焦透镜横向中心线IC的距离;O、H分别是聚焦透镜和光屏轴GH的中心点,H在聚焦透镜横向中心线IC上;K、L为聚焦透镜的左曲面和右曲面中心点,K、L均在聚焦透镜横向中心线IC上;假设:经过两振镜后的出射光BD与Z轴的角度∠DBC=θ;激光束BD进入F-theta聚焦透镜的入射角∠BDI=α1;左曲面折射后的角度∠FDN=β1;右曲面入射角角度∠DFP=β2;右曲面折射后的角度∠GFC=α2左曲面入射点中心角∠DIK=φ1;右曲面入射点中心角∠FCK=φ2;像点(x,y)与H点连线与X轴正方向成的角度φ;DE距离h;GH距离R;已知物理量:f:OH距离,即F-t...

【专利技术属性】
技术研发人员:陈光胜项汉桢
申请(专利权)人:上海理工大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1