一种叉车全局路径规划方法技术

技术编号:20019452 阅读:18 留言:0更新日期:2019-01-06 01:17
本发明专利技术涉及一种叉车全局路径规划方法,包括:根据叉车实际的工作环境结合栅格法建立叉车工作环境的地图模型;将叉车路径进行编码并随机初始化N个粒子;以叉车路径长度为基础结合叉车工作的安全度和平滑度建立适应度函数;生成随机数rand(0,1),判断随机数rand(0,1)是否达到使用精英反向学习策略的概率条件,根据判断结果更新全局最优粒子;判断是否达到收敛条件,若判断结果为是,则输出最优路径,否则,返回步骤(4)。本发明专利技术加快了粒子群算法的收敛速度,提高了叉车全局路径规划的效率,有效地减少规划出的路径长度。

A Global Route Planning Method for Forklift Trucks

The invention relates to a forklift truck global path planning method, which includes: establishing a map model of the forklift truck working environment according to the actual working environment of the forklift truck combined with the grid method; coding the forklift truck path and randomly initializing N particles; establishing the fitness function based on the forklift truck path length and combining the safety and smoothness of the forklift truck work; generating the random number Rand (0,1) and judging the random number. Rand (0,1) updates the global optimal particle according to the judgment result, and determines whether the convergence condition is reached. If the judgment result is yes, the optimal path is output, otherwise, the return step (4). The invention accelerates the convergence speed of the particle swarm optimization algorithm, improves the efficiency of forklift truck global path planning, and effectively reduces the planned path length.

【技术实现步骤摘要】
一种叉车全局路径规划方法
本专利技术涉及AGV路径规划
,尤其是一种叉车全局路径规划方法。
技术介绍
随着物流业的飞速发展,仓库对于叉车的需求量日益增加,然而存储物件的储物柜都将成为叉车实际工作中的障碍物,人为驾驶叉车虽然能够主动进行避障但却无法在最短的时间内完成货物的传送时间指标,解决该矛盾的核心其实就是研究叉车在实际工作环境中的路径规划问题。目前针对路径规划问题,国内外的专家学者提出了不同的解决办法,如蚁群算法、粒子群算法、模拟退火算法和遗传算法,这些算法都有各自的优点以及缺点,有的算法迭代速度快却容易陷入局部最优,而有的算法的不容易陷入局部最优,但其搜索效率却比较低。2009年伊朗的克曼大学教授EsmatRashedi等人基于物理学中的万有引力定律提出了一种万有引力搜索算法,它通过群体中粒子之间的万有引力相互作用产生的群体智能指导优化搜索,1995年Eberhart和Kennedy提出了粒子群优化算法,该算法是基于群体智能的一种进化计算方法,反向学习是近年来计算智能领域出现的一种新技术,它的主要思想是:同时计算可行解及其反向解,从中选择较优的解作为下一代个体。这些算法都被广泛地应用于不同的领域,如旅行商问题,电网调度问题以及路径规划问题等,但单方面不加改进的算法存在运行时间长,容易陷入局部最优等不同的缺点。为了解决叉车在复杂工作环境中的路径规划问题,加快收敛速度,降低陷入局部最优的概率,需要在最短的时间内寻找到一条最优路径来满足实际的指标需求。
技术实现思路
本专利技术的目的在于提供一种能够有效地提高搜索效率,降低收敛代数,并能有效地减少规划出的路径长度的叉车全局路径规划方法。为实现上述目的,本专利技术采用了以下技术方案:一种叉车全局路径规划方法,该方法包括下列顺序的步骤:(1)根据叉车实际的工作环境结合栅格法建立叉车工作环境的地图模型;(2)将叉车路径进行编码并随机初始化N个粒子;(3)以叉车路径长度为基础结合叉车工作的安全度和平滑度建立适应度函数;(4)生成随机数rand(0,1),判断随机数rand(0,1)是否达到使用精英反向学习策略的概率条件,根据判断结果更新全局最优粒子;(5)判断是否达到收敛条件,若判断结果为是,则输出最优路径,否则,返回步骤(4)。所述步骤(2)具体是指:将连接叉车起点和终点的路径编码,随机初始化N个粒子,所有粒子在n维空间中移动以搜索全局最优解,第i个粒子Xi的位置分量为xij,xij=(xi,yj)。所述步骤(3)具体包括以下步骤:(3a)采用如下的路径长度公式来计算叉车行驶的总距离:上式中,g1为从点xij=(xi,yj)到点xi+1j+1=(xi+1,yj+1)的欧氏距离;(3b)采用惩罚函数来计算安全度,惩罚函数为:其中,g2为安全度,K为叉车顺着每条路径运行会遇到的障碍物数量;(3c)计算平滑度,公式如下:式中:n1表示例子所走对角路径中叉车转角45°的次数,n2表示粒子所走直角路径中叉车转角90°的次数,d表示叉车质心到边界的垂直距离;g3为平滑度;(3d)通过上述路径长度、安全度和平滑度建立适应度函数:fiti=α·g1+β·g2+γ·g3式中:α、β、γ为各自函数的加权因子,均为大于等于0的任意实数,通过调整α、β、γ调节g1、g2、g3在适应度函数中所占的比重,fiti为粒子Xi的适应度函数值。所述步骤(4)具体包括如下步骤:(4a)生成随机数rand(0,1),若随机数rand(0,1)达到使用精英反向学习策略的概率条件,即小于既定概率p0,则执行步骤(4b),否则,执行步骤(4c);(4b)使用精英反向学习策略更新全局最优粒子;(4c)直接重复步骤(3)计算当前普通粒子Xi=(xi,yj)的适应度值,选取适应度值最小的粒子作为全局最优粒子;所述步骤(4b)包括以下步骤:(4b1)使用精英反向学习策略获得精英粒子的反向解;设Xi=(xi,yj)是n维搜索空间的一颗普通粒子,其对应的自身极值定义为精英粒子定义精英粒子的反向解为:其中,n是X的维数,δ∈(0,1)为一般化系数,(dai,dbi),(daj,dbj)代表搜索空间的动态边界,其计算公式为:daj=min(yj),dbj=max(yj);对于跳出边界的反向解采用随机生成的方法对其进行重置如下公式所示:(4b2)根据适应度函数计算当前普通粒子和精英粒子的适应度值;重复步骤(3)分别计算当前普通粒子Xi=(xi,yj)和精英粒子的适应度值;(4b3)从当前种群和反向种群选取最优粒子,即适应度函数值最小的粒子作为全局最优粒子。所述步骤(5)具体包括以下步骤:(5a)利用步骤(3)计算步骤(4)中全局最优粒子的适应度值;(5b)判断是否达到收敛条件,若适应度函数值大于设定值,则为未达到收敛条件,返回步骤(4);若适应度函数值小于或等于设定值,则为达到收敛条件,则输出最优路径,设定值根据精度需求取得。由上述技术方案可知,本专利技术的优点在于:第一,加快了粒子群算法的收敛速度,第二提高了叉车全局路径规划的效率,第三,有效地减少规划出的路径长度。附图说明图1为本专利技术的方法流程图;图2为传统引力搜索粒子群算法与本专利技术的性能比较示意图。具体实施方式如图1所示,一种叉车全局路径规划方法,该方法包括下列顺序的步骤:(1)根据叉车实际的工作环境结合栅格法建立叉车工作环境的地图模型;(2)将叉车路径进行编码并随机初始化N个粒子;(3)以叉车路径长度为基础结合叉车工作的安全度和平滑度建立适应度函数;(4)生成随机数rand(0,1),判断随机数rand(0,1)是否达到使用精英反向学习策略的概率条件,根据判断结果更新全局最优粒子;(5)判断是否达到收敛条件,若判断结果为是,则输出最优路径,否则,返回步骤(4)。所述步骤(2)具体是指:将连接叉车起点和终点的路径编码,随机初始化N个粒子,所有粒子在n维空间中移动以搜索全局最优解,第i个粒子Xi的位置分量为xij,xij=(xi,yj)。根据叉车实际的工作环境结合栅格法建立叉车工作环境的地图模型,具体如下:只考虑叉车在水平方向上的运动,不考虑叉车在竖直方向上的运动;叉车自身带有红外线传感器,激光传感器,陀螺仪等以包含自身的起点位置、终点位置、障碍物位置等;根据以上采集到的环境信息使用栅格法来进行二维建模。引入叉车工作的安全度和平滑度的概念,以路径长度为基础结合安全度和平滑度建立适应度函数;全局路径规划策略旨在使叉车在最短的时间内用最短的距离到达终点,采用路径长度公式来计算叉车行驶的总距离;由于叉车的工作环境比较复杂,会遇到各种障碍物,因此需要引入一个惩罚函数,来提高叉车的安全度,障碍物越多,所受的惩罚越大,从而此路径生成的概率越小。叉车在运动过程中走对角路线可缩短路径长度以节约时间,但改变叉车的运动方向也会耗费时间,为了使叉车完成任务所耗费的时间最短,引入平滑度公式。所述步骤(3)具体包括以下步骤:(3a)采用如下的路径长度公式来计算叉车行驶的总距离:上式中,g1为从点xij=(xi,yj)到点xi+1j+1=(xi+1,yj+1)的欧氏距离;(3b)采用惩罚函数来计算安全度,惩罚函数为:其中,g2为安全度,K为叉车顺着每条路径运行会遇到的障碍物数量;(3c)计算平滑本文档来自技高网...

【技术保护点】
1.一种叉车全局路径规划方法,其特征在于:该方法包括下列顺序的步骤:(1)根据叉车实际的工作环境结合栅格法建立叉车工作环境的地图模型;(2)将叉车路径进行编码并随机初始化N个粒子;(3)以叉车路径长度为基础结合叉车工作的安全度和平滑度建立适应度函数;(4)生成随机数rand(0,1),判断随机数rand(0,1)是否达到使用精英反向学习策略的概率条件,根据判断结果更新全局最优粒子;(5)判断是否达到收敛条件,若判断结果为是,则输出最优路径,否则,返回步骤(4)。

【技术特征摘要】
1.一种叉车全局路径规划方法,其特征在于:该方法包括下列顺序的步骤:(1)根据叉车实际的工作环境结合栅格法建立叉车工作环境的地图模型;(2)将叉车路径进行编码并随机初始化N个粒子;(3)以叉车路径长度为基础结合叉车工作的安全度和平滑度建立适应度函数;(4)生成随机数rand(0,1),判断随机数rand(0,1)是否达到使用精英反向学习策略的概率条件,根据判断结果更新全局最优粒子;(5)判断是否达到收敛条件,若判断结果为是,则输出最优路径,否则,返回步骤(4)。2.根据权利要求1所述的叉车全局路径规划方法,其特征在于:所述步骤(2)具体是指:将连接叉车起点和终点的路径编码,随机初始化N个粒子,所有粒子在n维空间中移动以搜索全局最优解,第i个粒子Xi的位置分量为xij,xij=(xi,yj)。3.根据权利要求1所述的叉车全局路径规划方法,其特征在于:所述步骤(3)具体包括以下步骤:(3a)采用如下的路径长度公式来计算叉车行驶的总距离:上式中,g1为从点xij=(xi,yj)到点xi+1j+1=(xi+1,yj+1)的欧氏距离;(3b)采用惩罚函数来计算安全度,惩罚函数为:其中,g2为安全度,K为叉车顺着每条路径运行会遇到的障碍物数量;(3c)计算平滑度,公式如下:式中:n1表示例子所走对角路径中叉车转角45°的次数,n2表示粒子所走直角路径中叉车转角90°的次数,d表示叉车质心到边界的垂直距离;g3为平滑度;(3d)通过上述路径长度、安全度和平滑度建立适应度函数:fiti=α·g1+β·g2+γ·g3式中:α、β、γ为各自函数的加权因子,均为大于等于0的任意实数,通过调整α、β、γ调节g1、g2、g3在适应度函数中所占的比重,fiti为粒子...

【专利技术属性】
技术研发人员:肖本贤黄俊杰江志政张旭陈荣保
申请(专利权)人:合肥工业大学
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1