当前位置: 首页 > 专利查询>东北大学专利>正文

一种基于复杂网络同步的混沌图像加密方法技术

技术编号:19938504 阅读:35 留言:0更新日期:2018-12-29 06:40
本发明专利技术提供一种基于复杂网络同步的混沌图像加密方法,涉及网络加密技术领域。一种基于复杂网络同步的混沌图像加密方法,首先将复杂网络进行同步;然后对明文图像进行量化处理,并将其作为当前图像,采用超混沌驱动系统对当前图像进行预处理,对当前图像进行置乱处理和扩散处理得到密文图像。最后对得到的密文图像量化处理,并将密文图像作为当前待处理图像,采用超混动响应系统同步产生置乱序列,对当前待处理密文图像进行逆扩散和逆置乱处理,得到明文图像。本发明专利技术提供的基于复杂网络同步的混沌图像加密方法,使得密文图像隐蔽性强,大大增加了破译的难度,而且使得加密算法能够抗各种统计攻击、暴力攻击和差分攻击。

【技术实现步骤摘要】
一种基于复杂网络同步的混沌图像加密方法
本专利技术涉及网络加密
,尤其涉及一种基于复杂网络同步的混沌图像加密方法。
技术介绍
随着人类社会的日益网络化,网络系统日益复杂,信息传输的安全性日益受到人们的关注。复杂网络在信息安全传输等方面有着重要的作用。近年来,随着智能设备的普及、图像业务的增加,图像传输的安全问题日益严重。2013年爆发的棱镜门事件,世界为之震颤,大量邮件和图像等私人信息被监控,世界陷入恐慌。2016年,我国成功发射“墨子号”量子通信卫星,标志着我国进入量子保密通信的时代,由此可见,保密通信无论对于个人还是国家,都具有重大意义。图像加密不同于普通文本加密,由于图像具有数据量大、冗余度高和像素相关性强等内在特性,常规加密算法如DES、RSA等传统加密方法并不适合。近些年来,一种新型的保密通信迅速兴起,即将混沌理论引入到保密通信当中。模拟混沌保密系统具有抗干扰能力差等缺点,数字通信技术很好地解决这一问题。同时,复杂网络同步可以解决密钥在传输过程中的安全性问题。因此,复杂网络的同步控制应用于图像混沌保密通信,具有重要意义。
技术实现思路
本专利技术要解决的技术问题是针对上述现有技术的不足,提供一种基于复杂网络同步的混沌图像加密方法,实现对网络传输的图像进行加密。一种基于复杂网络同步的混沌图像加密方法,包括以下步骤:步骤1、将复杂网络进行同步;步骤1.1、将待控制的每一个客户端看作是复杂网络中的一个节点,客户端与客户端之间的关系以结点之间的耦合程度表示建立复杂网络模型;将含有N个节点的复杂网络划分为m个社区,2≤m≤N;如果节点i属于第j个社区,i=1、2、…、N,j=1、2、…、N,且i≠j,有关系μi=j成立;设定Uj表示j个社区的全部节点,表示第j个社区中与其它社区有连接的节点根据以上假设,复杂网络的状态方程如下公式所示:其中,xi(t)=(xi1,xi2,…,xin)T∈Rn为节点i的状态向量,t为时间,方程为第μi个社区节点动力学行为特性的非线性连续可微的向量函数,对于任意两个节点i和节点j,如果μi≠μj,即节点i和节点j不属于同一个社区,则有c>0为耦合强度常数,Γ∈Rn×n为耦合矩阵,表示社区内部节点拓扑结构,设定Γ=diag(λ1,λ2,…,λn)为一对角矩阵,并且λi≥0,i=1,2,…n;拉普拉斯矩阵A=(aij)∈RN×N,满足行和为零这一条件;如果节点i和节点j通过一条边连接,则aij=aji≠0,否则,aij=aji=0;假定网络是连通的,即矩阵A是不可约的;步骤1.2、根据网络的耗散耦合条件,对网络中的节点采用牵制控制策略,对每个社区的外节点施加控制器进行控制,实现复杂网络社区节点的同步;所述复杂网络的第μi个社区的第i个节点的状态方程如下公式所示:其中,μi(t)为控制器,如下公式所示:步骤2、对复杂网络传输的图像进行加密,具体方法为:步骤2.1、对明文图像进行量化处理;对于像素为M×M′、灰度级水平为G的原始明文图像,获得它的二维像素值矩阵A′,将所述原始明文图像作为当前图像;步骤2.2、采用超混沌驱动系统对当前图像进行预处理;设定超混沌驱动系统的控制参数和初始条件,迭代超混沌驱动系统产生超混沌驱动系统的超混沌序列,并将超混沌序列转换为一个16*16的2维初始置乱矩阵;所述的超混沌驱动系统如下公式所示:其中,(x1,x2,x3,x4)∈R为状态变量,a,b,c,d,k均为超混沌系统的参数,当a=35,b=7,c=12,d=3,k=0.5时,该系统处于超混沌状态;步骤2.3、判断传输的图像是否为彩色图像,如果是,则从彩色图像中提取红、黄、蓝三个颜色分量的像素值矩阵,并对每个颜色分量的像素值矩阵分别执行步骤2.4-步骤2.5,得到加密处理后的红、黄、蓝三个颜色分量的密文图像,最后将得到的加密处理的红、黄、蓝三个颜色分量的密文图像合成原始彩色图像的密文图像;否则直接执行步骤2.4-步骤2.5,对图像进行加密;步骤2.4、对当前图像进行置乱处理;结合置乱矩阵和超混沌驱动系统的超混沌序列,对当前图像的像素值矩阵A′进行置乱,把置乱后像素值矩阵对应的图像作为当前图像;步骤2.5、对当前图像进行扩散处理;对Logistic映射进行W次混沌迭代,得到相应的混沌状态值,将其作为密钥序列;利用该密钥序列对明文分组数据进行扩散变换,并把扩散后像素值矩阵对应的图像作为当前图像,得到密文图像,实现图像的加密;所述对Logistic映射进行W次混沌迭代中的W值由如下公式确定:其中,B为上一次加密生成的最后一个密文数据的值,B_set为预设好的固定值;B的引入可以使前一次密文数据对本次的加密产生影响,从而改善扩散效果,使加密系统更加安全。第一次加密时,B的值为0。所述利用得到的密钥序列对明文分组数据进行扩散变换,如下公式所示:其中,Xn为步骤2得到的混沌序列值,Pn为待进行扩散变换的明文数据的值,Bn-1为前一个明文数据的密文值,当n=1时,Bn-1=B_sef,Bn为Pn经过扩散变换后的密文值;步骤3、对复杂网络传输的图像进行解密,具体方法为:步骤3.1、密文图像量化处理:对于步骤2中得到的密文图像,获得它的二维像素值矩阵,将密文图像作为当前待处理图像;步骤3.2、采用超混动响应系统同步产生置乱序列;在超混沌驱动系统与超混沌响应系统同步后,超混沌响应系统生成与超混沌驱动系统相同的初始置乱序列和初始置乱矩阵;步骤3.3、对当前图像进行逆扩散处理;将密文数据分解为以256个字节为单位的数据包;对Logistic进行逆变换得到对应的密钥序列;利用该密钥序列对明文分组数据进行逆扩散变换;把逆扩散后的像素值矩阵对应的图像作为当前图像;所述利用得到密钥序列对明文分组数据进行逆扩散变换,如下公式所示:步骤3.4、对当前图像进行逆置乱,实现对图像的解密:根据超混沌响应系统产生的初始逆置乱序列和初始逆置乱矩阵,对当前图像的像素值矩阵进行逆置乱,把逆置乱后的像素值矩阵对应的图像作为当前图像,得到解密的图像,实现对加密图像的解密。采用上述技术方案所产生的有益效果在于:本专利技术提供的一种基于复杂网络同步的混沌图像加密方法,通过构建复杂网络模型,引入内外节点的概念,建立了含有社区结构的复杂网络模型。采用牵制控制策略,对社区外节点进行控制,实现复杂网络的聚类同步,这使得图像加密传输从原来的点对点传输扩展到在一个复杂网络内传输,极大的提高了图像加密系统的实际使用价值。在复杂网络中传输密钥,更是大大的提高了图像加密系统的安全性,并且由于使用的是部分节点的牵制控制策略,大大减少了所需控制器的数量。同时,在生成初始置乱矩阵之前,首先对超混沌驱动系统进行迭代,消除了混沌系统初始值的影响,提高了算法复杂度,这使得密文图像隐蔽性强,大大增加了破译的难度,而且使得加密算法能够抗各种统计攻击、暴力攻击和差分攻击。附图说明图1为本专利技术实施例提供的一种基于复杂网络同步的混沌图像加密方法的流程图;图2为本专利技术实施例提供的复杂网络社区结构的拓扑图;图3为本专利技术实施例提供的特定牵制策略下社区中节点各状态变量误差的演化图,其中,(a)为第一维中各节点的状态误差曲线,(b)为第二维中各节点的状态误差曲线,(c)为第三维中各节点的状态误差曲线;本文档来自技高网...

【技术保护点】
1.一种基于复杂网络同步的混沌图像加密方法,其特征在于:包括以下步骤:步骤1、将复杂网络进行同步;步骤1.1、将待控制的每一个客户端看作是复杂网络中的一个节点,客户端与客户端之间的关系以结点之间的耦合程度表示建立复杂网络模型;步骤1.2、根据复杂网络的耗散耦合条件,对复杂网络中的节点采用牵制控制策略,对每个社区的外节点施加控制器进行控制,实现复杂网络社区节点的同步;步骤2、对复杂网络传输的图像进行加密,具体方法为:步骤2.1、对明文图像进行量化处理;对于像素为M×M′、灰度级水平为G的原始明文图像,获得它的二维像素值矩阵A′,将所述原始明文图像作为当前图像;步骤2.2、采用超混沌驱动系统对当前图像进行预处理;设定超混沌驱动系统的控制参数和初始条件,迭代超混沌驱动系统产生超混沌驱动系统的超混沌序列,并将超混沌序列转换为一个16*16的2维初始置乱矩阵;步骤2.3、判断传输的图像是否为彩色图像,如果是,则从彩色图像中提取红、黄、蓝三个颜色分量的像素值矩阵,并对每个颜色分量的像素值矩阵分别执行步骤2.4‑步骤2.5,得到加密处理后的红、黄、蓝三个颜色分量的密文图像,最后将得到的加密处理的红、黄、蓝三个颜色分量的密文图像合成原始彩色图像的密文图像;否则直接执行步骤2.4‑步骤2.5,对图像进行加密;步骤2.4、对当前图像进行置乱处理;结合置乱矩阵和超混沌驱动系统的超混沌序列,对当前图像的像素值矩阵A′进行置乱,把置乱后像素值矩阵对应的图像作为当前图像;步骤2.5、对当前图像进行扩散处理;对Logistic映射进行W次混沌迭代,得到相应的混沌状态值,将其作为密钥序列;利用该密钥序列对明文分组数据进行扩散变换,并把扩散后像素值矩阵对应的图像作为当前图像,得到密文图像,实现图像的加密;步骤3、对复杂网络传输的图像进行解密,具体方法为:步骤3.1、密文图像量化处理;对于步骤2中得到的密文图像,获得它的二维像素值矩阵,将密文图像作为当前待处理图像;步骤3.2、采用超混动响应系统同步产生置乱序列;在超混沌驱动系统与超混沌响应系统同步后,超混沌响应系统生成与超混沌驱动系统相同的初始置乱序列和初始置乱矩阵;步骤3.3、对当前图像进行逆扩散处理;将密文数据分解为以256个字节为单位的数据包;对Logistic进行逆变换得到对应的密钥序列;利用该密钥序列对明文分组数据进行逆扩散变换;把逆扩散后的像素值矩阵对应的图像作为当前图像;步骤3.4、对当前图像进行逆置乱,实现对图像的解密:根据超混沌响应系统产生的初始逆置乱序列和初始逆置乱矩阵,对当前图像的像素值矩阵进行逆置乱,把逆置乱后的像素值矩阵对应的图像作为当前图像,得到解密的图像,实现对加密图像的解密。...

【技术特征摘要】
1.一种基于复杂网络同步的混沌图像加密方法,其特征在于:包括以下步骤:步骤1、将复杂网络进行同步;步骤1.1、将待控制的每一个客户端看作是复杂网络中的一个节点,客户端与客户端之间的关系以结点之间的耦合程度表示建立复杂网络模型;步骤1.2、根据复杂网络的耗散耦合条件,对复杂网络中的节点采用牵制控制策略,对每个社区的外节点施加控制器进行控制,实现复杂网络社区节点的同步;步骤2、对复杂网络传输的图像进行加密,具体方法为:步骤2.1、对明文图像进行量化处理;对于像素为M×M′、灰度级水平为G的原始明文图像,获得它的二维像素值矩阵A′,将所述原始明文图像作为当前图像;步骤2.2、采用超混沌驱动系统对当前图像进行预处理;设定超混沌驱动系统的控制参数和初始条件,迭代超混沌驱动系统产生超混沌驱动系统的超混沌序列,并将超混沌序列转换为一个16*16的2维初始置乱矩阵;步骤2.3、判断传输的图像是否为彩色图像,如果是,则从彩色图像中提取红、黄、蓝三个颜色分量的像素值矩阵,并对每个颜色分量的像素值矩阵分别执行步骤2.4-步骤2.5,得到加密处理后的红、黄、蓝三个颜色分量的密文图像,最后将得到的加密处理的红、黄、蓝三个颜色分量的密文图像合成原始彩色图像的密文图像;否则直接执行步骤2.4-步骤2.5,对图像进行加密;步骤2.4、对当前图像进行置乱处理;结合置乱矩阵和超混沌驱动系统的超混沌序列,对当前图像的像素值矩阵A′进行置乱,把置乱后像素值矩阵对应的图像作为当前图像;步骤2.5、对当前图像进行扩散处理;对Logistic映射进行W次混沌迭代,得到相应的混沌状态值,将其作为密钥序列;利用该密钥序列对明文分组数据进行扩散变换,并把扩散后像素值矩阵对应的图像作为当前图像,得到密文图像,实现图像的加密;步骤3、对复杂网络传输的图像进行解密,具体方法为:步骤3.1、密文图像量化处理;对于步骤2中得到的密文图像,获得它的二维像素值矩阵,将密文图像作为当前待处理图像;步骤3.2、采用超混动响应系统同步产生置乱序列;在超混沌驱动系统与超混沌响应系统同步后,超混沌响应系统生成与超混沌驱动系统相同的初始置乱序列和初始置乱矩阵;步骤3.3、对当前图像进行逆扩散处理;将密文数据分解为以256个字节为单位的数据包;对Logistic进行逆变换得到对应的密钥序列;利用该密钥序列对明文分组数据进行逆扩散变换;把逆扩散后的像素值矩阵对应的图像作为当前图像;步骤3.4、对当前图像进行逆置乱,实现对图像的解密:根据超混沌响应系统产生的初始逆置乱序列和初始逆置乱矩阵,对当前图像的像素值矩阵进行逆置乱,把逆置乱后的像素值矩阵对应的图...

【专利技术属性】
技术研发人员:董迹海井元伟任涛吴蔚峰
申请(专利权)人:东北大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1