【技术实现步骤摘要】
一种基于YOLOv2网络的水上漂浮物检测方法
本专利技术涉及计算机视觉、机器学习领域,具体涉及一种基于YOLOv2网络的水上漂浮物检测方法。
技术介绍
我国淡水资源不断减少,而且污染现象较为严重。在湖泊、河道等水面上出现大量漂浮物,这些漂浮物含有大量对人体有害的物质。因此,为了人类的可持续发展,必须解决水污染问题。虽然目前在有些场景中使用了摄像机对水面进行监控,但是仍然需要有人对监控画面进行看守,这样不仅耗时费力,而且也无法保证准确、实时地对漂浮物做出反应。为了满足实际应用的需要,针对目前水上漂浮物检测出现的各种不足,需要研究对漂浮物的智能化检测,在深度学习的应用领域不断扩大的基础上,使对漂浮物实时监控和实现智能化、自动化、无人化的检测成为可能,因而可基于YOLOv2网络设计一种水上漂浮物检测方法。
技术实现思路
本专利技术基于YOLOv2网络,对河道或湖泊上的漂浮物进行实时检测,可以实现对水上漂浮物的实时监控,得到漂浮物的坐标信息、类别以及个数。并根据漂浮物的个数判断该河道或湖泊的污染程度,有助于解决水污染的问题。一种基于YOLOv2网络的水上漂浮物检测的方法,步骤 ...
【技术保护点】
1.一种基于YOLOv2网络的水上漂浮物检测的方法,其特征在于,步骤如下:步骤1:采集数据;通过摄像机采集河道或湖泊的视频,从中截取画面中包含水上漂浮物的图片,生成图片库A;利用相机对河道或湖泊上漂浮有漂浮物的图片进行采集,生成图片库B;得到用于训练YOLOv2网络的数据集A,数据集A包括图片库A和图片库B;步骤2:数据增强;对数据集A进行数据增强,通过数据增强生成图片库C,图片库C不包含图片库A和图片库B;图片库A、图库B和图库C构成数据集B;所述的数据增强包括旋转、反射变换、翻转变换、缩放变换、平移变换、尺度变换、对比度变换、噪声扰动和颜色变换;步骤3:标记图片;将数据 ...
【技术特征摘要】
1.一种基于YOLOv2网络的水上漂浮物检测的方法,其特征在于,步骤如下:步骤1:采集数据;通过摄像机采集河道或湖泊的视频,从中截取画面中包含水上漂浮物的图片,生成图片库A;利用相机对河道或湖泊上漂浮有漂浮物的图片进行采集,生成图片库B;得到用于训练YOLOv2网络的数据集A,数据集A包括图片库A和图片库B;步骤2:数据增强;对数据集A进行数据增强,通过数据增强生成图片库C,图片库C不包含图片库A和图片库B;图片库A、图库B和图库C构成数据集B;所述的数据增强包括旋转、反射变换、翻转变换、缩放变换、平移变换、尺度变换、对比度变换、噪声扰动和颜色变换;步骤3:标记图片;将数据集B中的水上漂浮物区域用矩形框进行标记,得到数据集D,数据集D包含矩形框的坐标信息和矩形框中所包含漂浮物的种类信息;步骤4:训练获得最优权重模型;将整个数据集B随机的分为三部分训练集Q1、验证集Q2和测试集Q3;4.1训练集Q1用于YOLOv2网络的训练,将训练集Q1以及步骤3中生成的数据集D送入到YOLOv2网络中进行训练得到多个权重模型;4.2验证集Q2用于调整模型参数;多个权重模型分别对验证集Q2进行预测,并记录权重模型的准确率;选出准确率最大的权重模型所对应的参数,用该参数生成最优权重模型;4.3使用测试集Q3进行最优权重模型的预测,获得最优权重模型用于检测模块的水上漂浮物的检测;步骤5:实时检测水上漂浮物;将视频监控设备与计算机连接起来,...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。