【技术实现步骤摘要】
一种漂移检测的残差深度特征目标跟踪方法
本专利技术涉及图像处理和计算机视觉
,特别是一种漂移检测的残差深度特征目标跟踪方法。
技术介绍
在各交通路段,都有着监控摄像头的身影,它们时刻观察着来往车辆,并对违规车辆进行身份信息确认和跟踪,其中,使用的目标跟踪技术,已是计算机视觉领域的核心研究课题之一,在现实生活中有着广泛的应用,不仅仅在交通监控,智能手机,智能机器人,自动驾驶,军事等领域都有它在发挥着重要作用。传统的目标跟踪算法遇到目标形变,光照变化,背景杂乱等困难时,并不能取得很好的跟踪效果,无法满足人们的需求。随着深度学习的蓬勃发展,对计算机视觉领域产生着巨大的影响,人们开始在其中寻找解决问题的方法。近年来目标跟踪以2014年JFHenriques等人(HenriquesJF,RuiC,MartinsP,etal.High-SpeedTrackingwithKernelizedCorrelationFilters[J].IEEETransactionsonPatternAnalysis&MachineIntelligence,2014,37(3):5 ...
【技术保护点】
1.一种漂移检测的残差深度特征目标跟踪方法,其特征在于,包括以下步骤:步骤一、训练残差深度特征网络;残差深度特征网络的结构包括4个卷积层、2个全连接层和1个残差结构;4个卷积层分别是conv1、conv2、conv3和conv4,2个全连接层分别是fc5和fc6,其中,conv1、conv2、conv3和conv4分别为第一卷积层、第二卷积层、第三卷积层和第四卷积层,fc5为第一全连接层,fc6为第二全连接层、也是网络输出层;conv1、conv2、conv3、conv4、fc5和fc6依次顺序连接,残差结构用于将第二卷积层输出特征与第四卷积层输出特征进行线性相加,再通过激 ...
【技术特征摘要】
1.一种漂移检测的残差深度特征目标跟踪方法,其特征在于,包括以下步骤:步骤一、训练残差深度特征网络;残差深度特征网络的结构包括4个卷积层、2个全连接层和1个残差结构;4个卷积层分别是conv1、conv2、conv3和conv4,2个全连接层分别是fc5和fc6,其中,conv1、conv2、conv3和conv4分别为第一卷积层、第二卷积层、第三卷积层和第四卷积层,fc5为第一全连接层,fc6为第二全连接层、也是网络输出层;conv1、conv2、conv3、conv4、fc5和fc6依次顺序连接,残差结构用于将第二卷积层输出特征与第四卷积层输出特征进行线性相加,再通过激活函数输出,实现不同层的输出特征融合,对目标和背景进行分类;步骤二、从当前帧裁剪得到的样本集,该样本集输入步骤一训练得到的残差深度特征网络,输出残差深度特征网络conv4的值,conv4输出值与相对应的回归标签构成训练样本集,根据训练样本集训练目标模板并且定位当前帧目标;步骤三、检测模型漂移策略;通过确定响应矩阵的峰值强度PSR连续下降现象来确定目标模板出现问题的位置;具体如下:响应矩阵fp是由当前帧测试样本集和初始帧训练样本集,根据计算得出,其中,ZP为测试样本集,XP为训练样本集,K表示核空间的核矩阵,上标∧均表示傅里叶变换;响应矩阵的峰值强度计算如下式所示,其中PSR为峰值强度,max_fp表示响应矩阵fp中元素最大值,μ表示fp中旁瓣的平均值,σ表示fp中旁瓣的标准差;定义一个响应强度下降计数器counter,初始帧数值为0,设置计数器阈值为η,通过计数器的数值判断PSR连续下降的现象是否出现;设第t帧的PSR为a,第(t+1)帧的PSR为b,若b-a<0,则counter数值加1,若b-a>=0,则counter数值变为0,每一帧计算响应矩阵,计算counter数值,若counter>η,判断当前帧跟踪出现问题,上一帧更新的目标模板不适合定位当前帧目标,出现模型漂移;步骤四、更新目标模型;目标模型包含目标模板和外观模型,通过更新目标模板和外观模型实现对目标的精确跟踪;若counter<=η,判断当前帧定位准确,计算目标位置其中,r,c分别表示目标位置坐标的横坐标和纵坐标,按照以下公式对第(t+n)帧进行目标模板和外观模型的更新,其中n≥1;model_wt+n=(1-γ)model_wt+n-1+γwt+nmodel_xt+n=(1-γ)model_xt+n-1+γxt+n其中model_wt+n-1表示第(t+n-1)帧的目标模板,wt+n表示第(t+n)帧的目标模板,model_wt+n表示更新后的目标模板;model_xt+n-1表示第(t+n-1)帧的外观模型,xt+n表示第(t+n)帧的外观模型,model_xt+n表示更新后的外观模型,γ表示比例系数,是决定前一帧模板信息与当前帧模板信息的融合权重;若counter>η,判断当前帧定位不准确...
【专利技术属性】
技术研发人员:胡昭华,郑伟,钱坤,
申请(专利权)人:南京信息工程大学,
类型:发明
国别省市:江苏,32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。