混合状态下控制子区的动态划分和调整方法技术

技术编号:19636585 阅读:94 留言:0更新日期:2018-12-01 17:06
一种混合状态下控制子区的动态划分和调整方法,属于交通控制工程领域,包括如下步骤:1)获取道路路网信息和交叉口道路流量信息;2)运用交通状态识别算法识别非饱和区域和过饱和区域;3)分别对非饱和区域和过饱和区域进行子区划分;4)对其控制子区进行合理性和高效性的判断,实现子区的动态调整。与现有技术相比,本发明专利技术克服了城市路网交通状况受早晚等高峰时段影响较大的问题,对路网的实时交通状况进行反馈,适时地对子区划分方案进行动态调整。

Dynamic Partition and Adjustment Method of Control Subregion in Mixed State

A dynamic partition and adjustment method of control subarea under mixed state belongs to the field of traffic control engineering, which includes the following steps: 1) obtaining road network information and road flow information at intersections; 2) identifying unsaturated and supersaturated regions by traffic state recognition algorithm; 3) identifying unsaturated and supersaturated regions respectively. To divide sub-areas; 4) to judge the rationality and efficiency of its control sub-areas, and to realize the dynamic adjustment of sub-areas. Compared with the prior art, the invention overcomes the problem that the traffic condition of the urban road network is greatly affected by the morning and evening peak periods, feeds back the real-time traffic condition of the road network, and dynamically adjusts the subarea division scheme in time.

【技术实现步骤摘要】
混合状态下控制子区的动态划分和调整方法
本专利技术涉及交通控制工程、大数据分析应用领域,尤其涉及一种过饱和交通状态识别办法和混合状态下控制子区动态划分和调整方法。
技术介绍
随着城市经济的发展,交通拥堵问题不断加剧,由于交通流变化的复杂性和随机性,其中表现较为突出的是,受早晚高峰等时段影响,交通流变化较为明显,从而导致城市路网交通状态变化频繁、复杂,经常处于混合交通状态中。而目前适合于非饱和或过饱和状态下的信号控制策略在混合状态下无法发挥最好的控制效率,即控制策略适用范围或方法存在一定的局限性。因此为了能有效提高对混合交通状态下区域路网的协调控制效益,本专利技术提出对混合状态下的控制路网进行区域划分,以便针对不同状态区域,采用适合的控制策略达到提高混合状态下城市路网协调控制效益的目的。
技术实现思路
为了克服城市路网交通状况受早晚等高峰时段影响较大的问题,城市路网交通流量变化的随机性、复杂性和时段性,无论是处于非饱和状态还是过饱和状态下的控制子区,前一个时间间隔划分出的子区方案不一定适用于下一个时间间隔,因此需对路网的实时交通状况进行反馈,适时地对子区划分方案进行动态调整。本专利技术提出一种混合状态下控制子区的动态划分和调整方法。本专利技术解决其技术问题所采用的技术方案是:一种混合状态下控制子区的动态划分和调整方法,包括以下步骤:1)假设在第n-1周期没有滞留车辆,红灯开始后,上游车辆开始向下游排队等待,形成一个从停车线向后以速度v1的停车波向上游蔓延,在TA时刻排队车辆蔓延到检测器位置并继续向上游方向排队,设检测器离进口道距离为Ld;在时刻红灯结束绿灯启亮,车辆开始以饱和流率驶离交叉口,假设下游未达到饱和状态,形成以速度为v2的启动波向上游传播,设启动波到达检测器的时刻为TB;当停车波时与启动波在某一点相遇时,排队长度达到最大值设该时刻为随后,排队车辆将以速度v3的消散波开始消散,设消散波经过检测器的时刻为TC,绿灯的结束时刻为则有当绿灯结束时,车辆又开始积累排队,此时形成以速度v4的停车波向后蔓延;消散波与停车波的相遇点即为此周期滞留的排队长度,对于整个周期而言,该排队长度是该周期里最小的排队长度此后,若车流保持相同甚至大于该周期的流率,车流将不断地重复着这个过程;2)获取道路路网信息和交叉口道路流量信息,运用交通状态识别算法识别非饱和区域和过饱和区域,过程如下:2.1)先应用如下公式判断识别一个周期结束后是否有滞留车辆:当产生滞留车辆时,可应用如下公式计算其最小滞留排队长度和对应的时刻:2.2)用路段排队消散度QD来衡量过饱和状况,指标计算公式为:式中,ljam为堵塞状态下有效车辆长度,h为饱和状态下车头时距,G为周期内的总绿灯时间;用排队消散度可判别交叉口路段是否处于过饱和状态,当QD=0时,则交叉口路段处于非饱和状态,当QD>0时,交叉口路段处于过饱和状态;3)分别对非饱和区域和过饱和区域进行子区划分;4)对于混合状态下已进行过子区划分的的城市交通路网,随着交通状况的实时动态变化,有必要对其控制子区进行合理性和高效性的判断,以实现子区的动态调整,过程如下:4.1)在每个信号周期内,审查过饱和控制子区的调整条件TCnet是否满足TCnet≥N,N为该子区内拥堵交叉口的个数,计算采用如下公式:式中:为城市路网中交叉口i的拥堵指数;Rik为与城市路网中交叉口i相邻的第k条路段,K为与交叉口i相邻路段的总数和;非饱和子区的调整条件,即计算绿波带带宽达到率是否满足计算采用如下公式:式中:Bw和Bv分别为子区内正向和反向的绿波带带宽,kw和kv作为目标函数里的加权系数,Gwmin和Gvmin分别为子区内绿波带正向和反向各交叉口中协调方向最小的绿灯时间;4.2)根据调整条件是否达标,计算“过饱和调整指数”和“非饱和调整指数”,若过饱和控制区域调整条件未达标,则“过饱和调整指数”累计值加1,否则累计值减1;同理,若非饱和控制子区调整未达标,则“非饱和调整指数”累计值加1,否则累计值减1;4.3)若“调整指数”累计值达到4,则认为这种状态下子区的划分已经“过时”,需要对子区做出调整,调整后,“调整指数”累计值清零;4.4)如果是过饱和子区已经过时,需重新计算找出该子区内非拥堵交叉口,考虑划入非饱和子区中;如果是非饱和子区已经过时需重新计算找出该子区内拥堵交叉口,考虑划入过饱和子区中,保证城市路网以最佳效率运行。注意:“调整指数”累计值为正整数。由于引入的“调整指数”有利于消除具有随机性交通状况带来的干扰,使得子区的动态调整更加鲁棒和有效。进一步,所述步骤3)中,对于非饱和区域,划分步骤如下:3.1)计算所有路段的可协调度,即粗划分指标,以此初次划分子区,首先进行路网信号配时初始化,获取每个交叉口的单点控制方案,用于计算相邻交叉口Ix与交叉口Iy之间的可协调度当大于等于合并阈值CIHB时,相邻交叉口Ix与交叉口Iy必须无条件合并在同一个子区进行协调;当小于等于分离阈值CIFL时,相邻交叉口Ix与交叉口Iy不能合并在同一个子区进行协调,CIHB和CIFL的阈值需结合大量的模拟仿真结论与工程实践经验进行综合;3.2)根据可协调度对初次划分剩余的路段进行降序排序并开始遍历,当相邻交叉口Ix与交叉口Iy之间的可协调度满足时,需要进行细划分,并对它们进行排序为细划分做准备;3.3)在未遍历的路段当中选取可协调度最大的路段,可协调度越大,说明两交叉口间的关联性越强,则优先考虑尝试划入同一控制子区;3.4)尝试将路段两端的交叉口划入同一个信号控制子区,若路段两端的交叉口分别属于两个不同的控制子区,则考虑将两个控制子区进行合并;3.5)用最大绿波带优化模型计算控制子区内最大双向非对称绿波带带宽;3.6)控制子区内绿波带带宽是否足够大,即子区内绿波带带宽达到率是否足够大,由于子区内绿波带带宽属于非对称的双向绿波带带宽,故达到率的计算公式为:式中:Bw和Bv分别为子区内正向和反向的绿波带带宽,kw和kv作为目标函数里的加权系数,Gwmin和Gvmin分别为子区内绿波带正向和反向各交叉口中协调方向最小的绿灯时间,当大于等于分离阈值AYZ时,路段两端的交叉口划分在同一个控制子区,否则说明该控制子区不合理,不能划入同一子区;3.7)判断是否还有未遍历的路段,若还有未遍历的路段回到步骤3.3),否则说明路网中所有路段全部遍历完毕,子区划分完毕。再进一步,所述步骤3)中,对于过饱和区域,由于过饱和交通拥堵的形成由点及线及面向周围扩散,而协调的目的是尽可能充分合理利用绿灯时间,避免排队车辆过长,防止绿灯损失;因此对过饱和交通拥堵的有效控制更多需要从整体区域控制着手,对过饱和交通控制区域包含的交叉口数量不受限制,无需再进行细划分。本专利技术的有益效果为:克服现有城市路网交通状况受早晚等高峰时段影响较大的问题,对路网的实时交通状况进行反馈,适时地对子区划分方案进行动态调整。附图说明图1是混合状态下子区动态划分方法的逻辑流程图;图2是杭州某一实际路网示意图;图3是仿真路网示意图;图4是实施例平峰期混合状态子区划分结果示意图;图5是实施例高峰期混合状态子区划分结果示意图。具体实施方式下面结合附图对本专利技术作进一步描述。参照图1~图5,一种混合状态下控制子区的动态本文档来自技高网...

【技术保护点】
1.一种混合状态下控制子区的动态划分和调整方法,其特征在于,所述方法包括以下步骤:1)假设在第n‑1周期没有滞留车辆,红灯开始后,上游车辆开始向下游排队等待,形成一个从停车线向后以速度v1的停车波向上游蔓延,在TA时刻排队车辆蔓延到检测器位置并继续向上游方向排队,设检测器离进口道距离为Ld;在

【技术特征摘要】
1.一种混合状态下控制子区的动态划分和调整方法,其特征在于,所述方法包括以下步骤:1)假设在第n-1周期没有滞留车辆,红灯开始后,上游车辆开始向下游排队等待,形成一个从停车线向后以速度v1的停车波向上游蔓延,在TA时刻排队车辆蔓延到检测器位置并继续向上游方向排队,设检测器离进口道距离为Ld;在时刻红灯结束绿灯启亮,车辆开始以饱和流率驶离交叉口,假设下游未达到饱和状态,形成以速度为v2的启动波向上游传播,设启动波到达检测器的时刻为TB;当停车波时与启动波在某一点相遇时,排队长度达到最大值设该时刻为随后,排队车辆将以速度v3的消散波开始消散,设消散波经过检测器的时刻为TC,绿灯的结束时刻为则有当绿灯结束时,车辆又开始积累排队,此时形成以速度v4的停车波向后蔓延;消散波与停车波的相遇点即为此周期滞留的排队长度,对于整个周期而言,该排队长度是该周期里最小的排队长度此后,若车流保持相同甚至大于该周期的流率,车流将不断地重复着这个过程;2)获取道路路网信息和交叉口道路流量信息,运用交通状态识别算法识别非饱和区域和过饱和区域,过程如下:2.1)先应用如下公式判断识别一个周期结束后是否有滞留车辆:当产生滞留车辆时,可应用如下公式计算其最小滞留排队长度和对应的时刻:2.2)用路段排队消散度QD来衡量过饱和状况,指标计算公式为:式中,ljam为堵塞状态下有效车辆长度,h为饱和状态下车头时距,G为周期内的总绿灯时间;用排队消散度可判别交叉口路段是否处于过饱和状态,当QD=0时,则交叉口路段处于非饱和状态,当QD>0时,交叉口路段处于过饱和状态;3)分别对非饱和区域和过饱和区域进行子区划分;4)对于混合状态下已进行过子区划分的城市交通路网,随着交通状况的实时动态变化,有必要对其控制子区进行合理性和高效性的判断,以实现子区的动态调整,过程如下:4.1)在每个信号周期内,审查过饱和控制子区的调整条件TCnet是否满足TCnet≥N,N为该子区内拥堵交叉口的个数,计算采用如下公式:式中:为城市路网中交叉口i的拥堵指数;Rik为与城市路网中交叉口i相邻的第k条路段,K为与交叉口i相邻路段的总数和;非饱和子区的调整条件,即计算绿波带带宽达到率是否满足计算采用如下公式:式中:Bw和Bv分别为子区内正向和反向的绿波带带宽,kw和kv作为目标函数里的加权系数,Gwmin和Gvmin分别为子区内绿波带正向和反向各交叉口中协调方向最小的绿灯时间;4.2)根据调整条件是否达标,计算“过饱和调整指数”和“非饱和调整指数”,若过饱和控制区域调整条件未达标,则“过饱和调整指数”累计值加1,否则累计值减1;同理,若非饱和控制子区调整未达标,则“非饱和调整指数”累计值加1,否则...

【专利技术属性】
技术研发人员:陈明王勐
申请(专利权)人:航天科工广信智能技术有限公司
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1