当前位置: 首页 > 专利查询>吉林大学专利>正文

一种基于参数激励及同步共振的微量物质检测装置及方法制造方法及图纸

技术编号:19565758 阅读:42 留言:0更新日期:2018-11-25 01:54
本发明专利技术涉及一种基于参数激励及同步共振的微量物质检测装置及方法,属于微量物质检测装置及方法。包括至少一根参激梁、参考梁、拾振梁,两个基底,两根同步耦合梁,压电激励电极,压电感应电极,压电激励感应电极和敏感层。拾振梁为悬臂梁,参激梁与参考梁为固定梁,参激梁用于接受外部刺激,使自身固有频率发生变化通过电极的激励和扫频实现触发及感应功能,参考梁用于触发功能时与参激梁产生同步共振,抑制能量损耗。优点是结构新颖,节约材料,功能完善,通过参激梁与参考梁产生同步共振,参激梁与拾振梁产生同步共振并运用参数激励原理分别实现触发与传感功能,实现频率倍增,提高装置的灵敏度,抑制能量耗散。

A Detection Device and Method for Trace Material Based on Parametric Excitation and Synchronous Resonance

The invention relates to a detection device and method for trace substances based on parameter excitation and synchronous resonance, belonging to the detection device and method for trace substances. It includes at least one parametric excitation beam, reference beam, pick-up beam, two substrates, two synchronous coupling beams, piezoelectric excitation electrode, piezoelectric induction electrode, piezoelectric excitation induction electrode and sensitive layer. The vibration pick-up beam is a cantilever beam, the parametric excitation beam and the reference beam are fixed beams, and the parametric excitation beam is used to receive external stimuli. The change of its natural frequency can be triggered and induced by the excitation and sweep of the electrodes. When the reference beam is used to trigger the function, it generates synchronous resonance with the parametric excitation beam and restrains the energy loss. The advantages are novel structure, material saving and perfect function. Synchronous resonance is generated between the parametric excitation beam and the reference beam, synchronous resonance between the parametric excitation beam and the pick-up beam, and triggering and sensing functions are realized respectively by using the principle of parametric excitation. Frequency doubling is realized, sensitivity of the device is improved, and energy dissipation is restrained.

【技术实现步骤摘要】
一种基于参数激励及同步共振的微量物质检测装置及方法
本专利技术属于微量物质检测装置及方法,尤其涉及一种可实现触发,传感两项功能的基于参数激励及同步、去同步共振原理的装置及方法。
技术介绍
基于非线性振动力学的同步共振原理,可实现低频激振高频拾振的频率倍增效应。当两个谐振子固有频率存在一定的整数比关系时,即发生同步共振。两谐振子振动频率保持一定倍数关系的现象称为相位锁定,又称锁相。日本东北大学团队通过对同步共振状态下的两根耦合梁的研究,确定了相位锁定现象,测定了同步共振区域的宽度,发现梁结构的同步共振有助于降低相位噪声;美国加州理工大学团队通过电路控制压电激励的输出信号,模拟耦合结构,分析了同步共振区域范围与激励电压的关系,并在实验现象中观察到了相位噪声的抑制。上述研究结果表明,谐振子的同步共振可实现相位噪声的抑制,有利于谐振式质量传感器分辨率的进一步提高。利用参数激励的激振方式,可实现梁结构的振幅跃变,提高传感器的分辨率。日本NTT基础研究实验室研究表明参数激励可以提高谐振子的品质因子,实现高灵敏度检测。上海交通大学张文明团队,在不同驱动信号输入情况下(高斯噪声,正弦波),利用多尺度法、Lenard-Jones位能模型以及Volterra级数方法研究了压膜阻尼、立方刚度、DC电压的改变对参数激励非线性振动特性(主要是软硬弹簧特性和谐振频率改变)的影响,为设计参数激励下的传感器奠定了基础。以上结果表明,参数激励能够实现更高的分辨率,但受扫频步长的限制,分岔点检测不准确。谐振式传感器是利用谐振元件把被测参量转换为频率信号的传感器,又称频率式传感器。近年来,由于其体积小、重量轻、结构紧凑、分辨率高、精度高以及便于数据传输、处理和存储等特点而被广泛应用于安全检测,环境监测,生物学探测等领域。将同步共振原理运用于谐振式传感器,其振动频率将得到成倍数的增加。相较于传统谐振式传感器,运用同步共振原理的谐振式传感器具有灵敏度高、相位噪声低、响应速度快等特点,对微小的信号检测更有优势。
技术实现思路
本专利技术提供一种基于参数激励及同步共振的微量物质检测装置及方法,目的在于提高装置的灵敏度,抑制能量耗散;缩短检测时间。本专利技术采取的技术方案是:包括至少一根参激梁、至少一根参考梁、至少一根拾振梁,其中拾振梁为悬臂短梁、其一端固定在基底二上,参激梁、参考梁两端分别与基底一和基底二固定连接,同步耦合梁一与基底一固定连接、且还分别与参考梁、参激梁连接,同步耦合梁二与基底二固定连接、且还分别与参考梁、参激梁和拾振梁连接,拾振梁上表面靠近与同步耦合梁二相接处有压电激励感应电极,参考梁上表面靠近与同步耦合梁一相接处有压电激励电极一,参激梁上表面靠近与同步耦合梁一相接处有压电激励电极二、靠近与同步耦合梁二相接处有压电感应电极;参考梁、参激梁、拾振梁、同步耦合梁一、及同步耦合梁二共同组成同步共振结构;参激梁、拾振梁及同步耦合梁二共同组成传感结构,参考梁、参激梁及同步耦合梁一、同步耦合梁二共同组成触发结构,敏感层涂覆于参激梁中部。所述参考梁结构是:从上到下相互连接的压电激励电极一、上绝缘层一、基底梁一和下绝缘层二;其中压电激励电极一的结构是:从上到下相互连接的压电层上电极一、压电薄膜一和压电层下电极一。所述参激梁的结构是:从上到下相互连接的上绝缘层二、基底梁二和下绝缘层二,压电激励电极二、压电感应电极分别连接在上绝缘层二上表面的两端,敏感层连接在上绝缘层二上表面的中部。所述压电激励电极二的结构是:从上到下相互连接的压电层上电极二、压电薄膜二和压电层下电极二。所述压电感应电极的结构是:从上到下相互连接的压电层上电极三、压电薄膜三和压电层下电极三。所述拾振梁的结构是;从上到下相互连接的压电激励感应电极、上绝缘层三、基底梁三和下绝缘层三。所述压电激励感应电极的结构是:从上到下相互连接的压电层上电极四、压电薄膜四和压电层下电极四。拾振梁为高频梁,参考梁和参激梁为低频梁,参激梁和参考梁共振频率相等;当低频梁固有频率为f1,高频梁固有频率为f2,其固有频率满足如下公式:a1f1=b1f2其中,a1、b1均为正整数,且a1>b1,a1/b1为频率的放大倍数。一种基于参数激励及同步共振的微量物质检测方法,其体征在于,包括下列步骤:(1)、根据被测物质的性质,在参激梁上涂覆对应敏感层,用于吸附该被测微量物质,其吸附量与被测物质浓度成正比;确定同步共振时a1、b1的准确值及检测之前参考梁、参激梁的固有频率f0和质量M1,初始状态下两梁质量及固有频率相同;根据要求制定所吸附被测物质报警质量M0;根据具体被测物质性质不同,将其分为:如含量过多则对被测环境有害的A类物质、如含量过低则对被测环境有害的B类物质,A类物质吸附量大于M0则对环境有害,B类物质吸附量小于M0则对环境有害;(2)、将该装置置于被测环境中,待被测环境中的被测物质与敏感层充分反应后,参激梁的质量由M1变为M1',向参激梁的压电激励电极、拾振梁的压电激励感应电极分别施加频率为fb、fc的激励交流电,并通过同步耦合梁二的作用使两梁发生同步共振,不断改变两激励交流电的频率fb、fc,当两梁在各自固有频率下振动时停止改变激励交流电的频率并停止对拾振梁通电,拾振梁在同步耦合耦合梁二的作用下继续保持原频率振动,输出此时对拾振梁的压电激励拾振电极上的激励交流电的频率fc即等于拾振梁此时的固有频率f2,此时参激梁的固有频率f1与拾振梁的固有频率f2存在如下关系通过该公式可计算此时参激梁的固有频率f1,再计算此时参激梁的固有频率偏移量△f1=f1-f0,△M1=M1'-M1,由于其质量偏移量△M1很微小,进而可以由公式求得此时参激梁质量偏移量△M1的数值,此时△M1就是敏感层所依附的被测物质的质量;(3)、完成对被测环境中被测物质的检测后,将此时敏感层吸附被测物质的质量△M1与报警质量M0比较:当被测物质类型为A类时,△M1-M0>0时该物质的量对环境有害;当被测物质类型为B类时,△M1-M0<0时该物质的量对环境有害;1)当被测物质对环境有害时,直接向外界发出该物质对环境有害的相关警报并输出该物质的相关浓度信息;2)当被测物质对环境无害时,将该装置继续处于被测环境中;向拾振梁上压电激励感应电极施加直流电,诱导拾振梁的有效刚度发生变化,使拾振梁与参激梁去同步共振即拾振梁不再与参激梁同步共振,此时拾振梁会逐渐停止振动但参激梁仍在振动,拾振梁停止振动之后停止向拾振梁上压电激励感应电极施加直流电,再向参考梁的压电激励电极施加频率为fa激励交流电,fa大小为参考梁固有频率f0,通过同步耦合梁二、同步耦合梁一的作用使参激梁与参考梁发生同步共振,两梁同步共振之后停止向参考梁通交流电,在同步耦合梁二、同步耦合梁一作用下,参考梁保持原频率振动;由于此时参激梁质量M1'与参考梁质量M1相差很小,所以改变激励交流电的频率fb,两梁不再在固有频率下振动而振动频率为fb,并使得若参激梁的固有频率到达fb则敏感层所吸附被测物质质量为M0,并将参激梁振动幅值A0通过参激梁的压电感应电极输出,若环境中被测物质浓度发生变化,敏感层上吸附的被测物质质量也随其变化,这将改变参激梁的质量进而改变其固有频率,即本文档来自技高网
...

【技术保护点】
1.一种基于参数激励及同步共振的微量物质检测装置,其特征在于:包括至少一根参激梁、至少一根参考梁、至少一根拾振梁,其中拾振梁为悬臂短梁、其一端固定在基底二上,参激梁、参考梁两端分别与基底一和基底二固定连接,同步耦合梁一与基底一固定连接、且还分别与参考梁、参激梁连接,同步耦合梁二与基底二固定连接、且还分别与参考梁、参激梁和拾振梁连接,拾振梁上表面靠近与同步耦合梁二相接处有压电激励感应电极,参考梁上表面靠近与同步耦合梁一相接处有压电激励电极一,参激梁上表面靠近与同步耦合梁一相接处有压电激励电极二、靠近与同步耦合梁二相接处有压电感应电极;参考梁、参激梁、拾振梁、同步耦合梁一、及同步耦合梁二共同组成同步共振结构;参激梁、拾振梁及同步耦合梁二共同组成传感结构,参考梁、参激梁及同步耦合梁一、同步耦合梁二共同组成触发结构,敏感层涂覆于参激梁中部。

【技术特征摘要】
1.一种基于参数激励及同步共振的微量物质检测装置,其特征在于:包括至少一根参激梁、至少一根参考梁、至少一根拾振梁,其中拾振梁为悬臂短梁、其一端固定在基底二上,参激梁、参考梁两端分别与基底一和基底二固定连接,同步耦合梁一与基底一固定连接、且还分别与参考梁、参激梁连接,同步耦合梁二与基底二固定连接、且还分别与参考梁、参激梁和拾振梁连接,拾振梁上表面靠近与同步耦合梁二相接处有压电激励感应电极,参考梁上表面靠近与同步耦合梁一相接处有压电激励电极一,参激梁上表面靠近与同步耦合梁一相接处有压电激励电极二、靠近与同步耦合梁二相接处有压电感应电极;参考梁、参激梁、拾振梁、同步耦合梁一、及同步耦合梁二共同组成同步共振结构;参激梁、拾振梁及同步耦合梁二共同组成传感结构,参考梁、参激梁及同步耦合梁一、同步耦合梁二共同组成触发结构,敏感层涂覆于参激梁中部。2.根据权利要求1所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:所述参考梁结构是:从上到下相互连接的压电激励电极一、上绝缘层一、基底梁一和下绝缘层二;其中压电激励电极一的结构是:从上到下相互连接的压电层上电极一、压电薄膜一和压电层下电极一。3.根据权利要求1所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:所述参激梁的结构是:从上到下相互连接的上绝缘层二、基底梁二和下绝缘层二,压电激励电极二、压电感应电极分别连接在上绝缘层二上表面的两端,敏感层连接在上绝缘层二上表面的中部。4.根据权利要求3所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:所述压电激励电极二的结构是:从上到下相互连接的压电层上电极二、压电薄膜二和压电层下电极二。5.根据权利要求3所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:所述压电感应电极的结构是:从上到下相互连接的压电层上电极三、压电薄膜三和压电层下电极三。6.根据权利要求1所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:所述拾振梁的结构是;从上到下相互连接的压电激励感应电极、上绝缘层三、基底梁三和下绝缘层三。7.根据权利要求6所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:所述压电激励感应电极的结构是:从上到下相互连接的压电层上电极四、压电薄膜四和压电层下电极四。8.根据权利要求1所述的一种基于参数激励及同步共振的微量物质检测装置,其特征在于:拾振梁为高频梁,参考梁和参激梁为低频梁,参激梁和参考梁共振频率相等;当低频梁固有频率为f1,高频梁固有频率为f2,其固有频率满足如下公式:a1f1=b1f2其中,a1、b1均为正整数,且a1>b1,a1/b1为频率的放大倍数。9.一种基于参数激励及同步共振的微量物质检测方法,其体征在于,包括下列步骤:(1)、根据被测物质的性质,在参激梁上涂覆对应敏感层,用于吸附该被测微量物质,其吸附量与被测物质浓度成正比;确定同步共振时a1、b1的准确值及检测之前参考梁、参激梁的固有频率f0和质量M1,初始状态下两梁质量及固有频率相同;根据要求制定所吸附被测物质报...

【专利技术属性】
技术研发人员:王东方杜旭安临君郑果文夏操万胜来冯昊楠孙超超滕浩王昕杨旭刘欣殷志富
申请(专利权)人:吉林大学
类型:发明
国别省市:吉林,22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1