一种三电极脉冲沿面流光放电等离子体防破覆冰装置制造方法及图纸

技术编号:19278458 阅读:30 留言:0更新日期:2018-10-30 18:35
本发明专利技术公开一种三电极脉冲沿面流光放电等离子体防破覆冰装置,在风力发电机叶片的易覆冰区域安装等离子体激励器,实现对该区域的防破覆冰。该激励器是高压激励电极、第一接地电极和第二接地电极交错布置于绝缘材料制成的风力发电机叶片表面和内部,其中高压激励电极和第二接地电极位于风力发电机叶片同侧且裸露在低温气相中,第一接地电极植入风力发电机叶片内部,采用高压脉冲电源激励。利用脉冲沿面流光放电的热效应加热来流和风力发电机叶片表面附着的液滴和冰晶使其融化和蒸发,利用产生的压力波及冲击效应将液滴与冰晶击碎和驱除,防破覆冰的发生。本发明专利技术提出的方法可以广泛应用于风力发电机叶片或其它有防除覆冰需求的对象。

An anti icing device with three electrodes pulsed surface discharge and plasma discharge

The invention discloses a three-electrode pulse streamer discharge plasma anti-icing device, which installs a plasma exciter in the easy icing area of a wind generator blade to realize the anti-icing of the area. The high voltage exciting electrode, the first ground electrode and the second ground electrode are arranged alternately on the surface and inside of the wind turbine blade made of insulating material. The high voltage exciting electrode and the second ground electrode are located on the same side of the wind turbine blade and exposed in the low temperature gas phase. The first ground electrode is implanted in the wind turbine. The inner part of the blade is driven by high voltage pulse power supply. The droplets and ice crystals attached to the blade surface of wind turbine are melted and evaporated by the thermal effect of pulsed streamer discharge, and the droplets and ice crystals are broken and removed by the pressure wave and impact effect to prevent the occurrence of ice breaking. The method can be widely applied to wind turbine blades or other objects with anti-icing requirements.

【技术实现步骤摘要】
一种三电极脉冲沿面流光放电等离子体防破覆冰装置
本专利技术属于放电等离子体在防除绝缘材料表面覆冰的应用
,涉及一种三电极脉冲沿面流光放电等离子体防破风力发电机叶片覆冰的装置,用于快速高效防破风力发电机叶片覆冰,也可以用于暴露于湿冷气体中绝缘材料表面覆冰去除。
技术介绍
由于传统化石能源的巨大消耗与不可再生,各国都在积极开发和研究可再生能源,而风能作为一种天然的清洁可再生能源,其发展与利用受到人们的普遍关注与青睐。风力发电机叶片作为捕获风能的装置,其运行效率显著影响着风力发电机的发电效率。风力发电机一般安装在高山与边疆区域,但由于该类地区温度低,湿度大,容易造成风力发电机叶片覆冰,大幅降低风力发电机的发电效率和使用寿命,甚至对周边的人和设备造成伤害。当前风力发电机叶片的防除覆冰技术主要有机械防除覆冰、涂料防除覆冰和热能防除覆冰。其中最为常见的为热能防除覆冰,虽然上述方式均表现出一定的效果,但都包含一定问题。机械防除覆冰容易对风力发电机叶片造成损伤,影响发电机的正常运行。涂料防除覆冰虽然操作简单,但由于涂料性能不稳定,不能很好保证叶片的防除覆冰效果。热能防除覆冰通常为气热法和电阻丝防除覆冰,但由于叶片的传热性能限制,其防除覆冰效果相对受限,并且当防除覆冰面积较大时,所需能耗将会很大。目前与应用等离子体防除覆冰相关在审与授权的专利主要有以下三份:(用于风力发电机叶片的等离子体控制装置和方法,中国专利技术专利,申请号:201310242446.0,邵涛,车学科,严萍,聂万胜,2016.01.20)、(一种基于等离子体冲击射流的破除冰方法,中国专利技术专利申请,申请号:201610841778.4,罗振兵,王林,蒋浩,夏智勋,周岩,2017.01.11)和(一种介质阻挡放电等离子体除积冰装置及方法,中国专利技术专利申请,申请号:201510275368.3,蔡晋生,田永强,孟宣市,翟琪,2015.09.09)。其中邵涛和蔡晋生等人的专利是基于传统沿面放电结构,存在放电区域有限,即防除覆冰范围受限的缺点。罗振冰等人的专利需安装等离子体激励器于孔内,孔的存在对激励器的安装要求较高,且当孔内充满冰和水时,其将不易产生合成射流实现破除覆冰。本申请的三电极脉冲沿面流光放电等离子体防破覆冰的装置通过第二接地电极的引入可有效增强其放电强度,且当流光接通第二接地电极时可产生火花放电,达到冲破覆冰的效果,但又不存在需要安装孔的问题。综上所述,风力发电机叶片急需一种高效、方便的防除覆冰的装置及方法,避免叶片覆冰造成不必要的损失。
技术实现思路
本专利技术为了克服现有技术对于风力发电机叶片防除覆冰存在的问题:对叶片有损伤、防除覆冰性能不稳定、防除覆冰效果受限、能耗较大和存在安装孔等,提出一种三电极脉冲沿面流光放电等离子体防破风力发电机叶片覆冰的装置。为了达到上述目的,本专利技术采用的技术方案为:一种三电极脉冲沿面流光放电等离子体防破覆冰装置,包括三电极等离子体激励器、等离子体电源系统。所述的等离子体电源系统根据防破覆冰条件的不同改变相应的脉冲峰值、脉冲宽度和脉冲频率。所述的三电极等离子体激励器包括高压激励电极1、第一接地电极3和第二接地电极4;其中高压激励电极1、第一接地电极3和第二接地电极4在绝缘材料上匹配布置形成沿面流光放电等离子体,所述的绝缘材料为风力发电机叶片2。所述的高压激励电极1和第二接地电极4位于绝缘材料同侧且裸露在低温气相中;所述的第一接地电极3植入绝缘材料内部,第一接地电极3与高压激励电极高度上存在的距离为0.1-10mm,宽度上可铺满绝缘材料内部,也可位于高压激励电极1和第二接地电极4之间,即在该状态下第一接地电极3可和高压激励电极1形成普通沿面放电;第二接地电极4的引入可增强高压激励电极与第一接地电极形成的普通沿面放电,也可在有水的导通作用下与高压激励电极形成火花放电增强放电强度。所述的高压激励电极1与等离子体电源系统的高压脉冲电源输出端连接,高压脉冲电源低压输出端、第二接地电极4、第一接地电极3与地线连接。所述的高压激励电极1和第二接地电极4在绝缘材料风力发电机叶片表面放置方式,可以在绝缘材料长度或者宽度方向上整体放置,也可以在绝缘材料表面长度或者宽度方向上多段连接放置,也可以在绝缘材料表面长度或者宽度方向上间隔连接放置。通过增加三电极等离子体激励器在绝缘材料上的放置套数,增加防破绝缘材料表面覆冰的区域。所述的高压激励电极1和第二接地电极4的结构组合形式可为锯齿形-锯齿形、锯齿形-矩形、芒刺形-芒刺形、芒刺形-矩形、长方形-长方形、长方形-矩形、棒-棒、棒-矩形、矩形-矩形的形式,其中,前者为高压激励电极1,后者为第二接地电极4,高压激励电极1和第二接地电极2之间的距离范围为1-500mm。所述的锯齿形结构存在一个角度,其角度α不大于180度,同一个电极上相邻锯齿间距d为0-200mm;所述的矩形宽度为0~100mm;所述的突出的芒刺形结构的芒刺相距为0-200mm,小刺角度范围不大于180度;所述的突出端长方形结构的宽度为0~50mm,同一个电极上相邻长方形电极之间间距为1mm-200mm;所述的突出的棒形结构是在长方形电极基础上将凸出端处理为圆弧形。当绝缘材料易覆冰区域需要防止覆冰时:此时三电极等离子体激励器未被冰层覆盖,等离子体电源系统为三电极等离子体激励器提供脉冲电压,三电极等离子体激励器工作;由高压激励电极1、第一接地电极3和第二接地电极4形成脉冲沿面流光放电等离子体,形成脉冲沿面流光放电等离子体的过程中伴有热效应、波效应与冲击效应,其中热效应将附着在叶片表面和在表面一定区域的冰晶与水滴受热融化蒸发,波效应和冲击效应对来流和介质层表面的冰晶与液滴进行破碎和吹除。三种效应的共同作用达到防止叶片覆冰的效果。当易覆冰区域需要破除覆冰时:此时三电极等离子体激励器被冰层覆盖,等离子体电源系统为三电极等离子体激励器提供脉冲电压,三电极等离子体激励器工作:开始阶段,高压激励电极1在供电条件下放电破碎和融化周围的冰层形成液态水;当有空气、水和冰共存时,高压激励电极1周围开始形成明亮的沿面放电流光,随沿面流光向第二接地电极4的持续发展,放电流光所到之处融化冰层形成通道,使通道成为了空气、液态水和冰共存的状态;当通道发展至第二接地电极4时,由于通道内水的导通作用,使高压激励电极1和第二接地电极4之间发生火花放电,产生的火花放电快速加热空气,产生强烈的压力波伴随着冲击力,至此冲破冰层甚至掀掉整个冰层,使其于叶片表面脱落。该方式相较于受热融化覆冰,其不仅仅利用热来融化冰层,更可利用冲击力破除冰层,可在较少能量注入的情况下使冰层脱落于叶片。本专利技术可以用于暴露湿冷气体中绝缘材料表面覆冰的去除。也可以制作成模块形式,安装在绝缘材料面,对暴露于湿冷气体中绝缘材料表面覆冰进行去除。与现有技术相比,本专利技术的有益效果为:本专利技术可以替代传统的机械防除覆冰、涂层防除覆冰和热能防除覆冰等方法,没有机械防除覆冰对叶片造成的机械损伤问题,也无涂层防除覆冰的性能不稳定与效果不理想问题,也无需复杂的供气管路和布置要求,在灵活性、响应速度和能耗等方面具有较大优势。特别是在有破除覆冰需求时,本专利技术可利用较少能量破除风力发电机叶片覆冰,而无需通过加热融化覆冰消耗大本文档来自技高网
...

【技术保护点】
1.一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的包括三电极等离子体激励器、等离子体电源系统;所述的等离子体电源系统根据防破覆冰条件的不同改变相应的脉冲峰值、脉冲宽度和脉冲频率;所述的三电极等离子体激励器包括高压激励电极(1)、第一接地电极(3)和第二接地电极(4);其中高压激励电极(1)、第一接地电极(3)和第二接地电极(4)在绝缘材料上匹配布置形成沿面流光放电等离子体;所述的高压激励电极(1)和第二接地电极(4)位于绝缘材料同侧且裸露在低温气相中;所述的第一接地电极(3)植入绝缘材料内部;第二接地电极(4)的引入可增强高压激励电极与第一接地电极形成的普通沿面放电,也可在有水的导通作用下与高压激励电极形成火花放电增强放电强度;所述的高压激励电极(1)与等离子体电源系统的高压脉冲电源输出端连接,高压脉冲电源低压输出端、第二接地电极(4)、第一接地电极(3)与地线连接;通过增加三电极等离子体激励器在绝缘材料上的放置套数,增加防破绝缘材料表面覆冰的区域。

【技术特征摘要】
1.一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的包括三电极等离子体激励器、等离子体电源系统;所述的等离子体电源系统根据防破覆冰条件的不同改变相应的脉冲峰值、脉冲宽度和脉冲频率;所述的三电极等离子体激励器包括高压激励电极(1)、第一接地电极(3)和第二接地电极(4);其中高压激励电极(1)、第一接地电极(3)和第二接地电极(4)在绝缘材料上匹配布置形成沿面流光放电等离子体;所述的高压激励电极(1)和第二接地电极(4)位于绝缘材料同侧且裸露在低温气相中;所述的第一接地电极(3)植入绝缘材料内部;第二接地电极(4)的引入可增强高压激励电极与第一接地电极形成的普通沿面放电,也可在有水的导通作用下与高压激励电极形成火花放电增强放电强度;所述的高压激励电极(1)与等离子体电源系统的高压脉冲电源输出端连接,高压脉冲电源低压输出端、第二接地电极(4)、第一接地电极(3)与地线连接;通过增加三电极等离子体激励器在绝缘材料上的放置套数,增加防破绝缘材料表面覆冰的区域。2.根据权利要求1所述的一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的绝缘材料为风力发电机叶片(2)。3.根据权利要求1或2所述的一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的绝缘材料内部的第一接地电极(3)与高压激励电极高度上存在的距离为0.1-10mm,宽度上可铺满绝缘材料内部,也可位于高压激励电极(1)和第二接地电极(4)之间,即在该状态下第一接地电极(3)可和高压激励电极(1)形成普通沿面放电。4.根据权利要求1或2所述的一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的高压激励电极(1)和第二接地电极(4)在绝缘材料表面放置方式:可以在绝缘材料长度或者宽度方向上整体放置,也可以在绝缘材料表面长度或者宽度方向上多段连接放置,也可以在绝缘材料表面长度或者宽度方向上间隔连接放置。5.根据权利要求3所述的一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的高压激励电极(1)和第二接地电极(4)在绝缘材料表面放置方式:可以在绝缘材料长度或者宽度方向上整体放置,也可以在绝缘材料表面长度或者宽度方向上多段连接放置,也可以在绝缘材料表面长度或者宽度方向上间隔连接放置。6.根据权利要求1或2或5所述的一种三电极脉冲沿面流光放电等离子体防破覆冰装置,其特征在于,所述的高压激励电极(1)和第二接地电极(4)的结构组合形式可为锯齿形-锯齿形、锯齿形-矩形、芒刺...

【专利技术属性】
技术研发人员:李杰彭邦发姜楠吴彦
申请(专利权)人:大连理工大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1