一种α粒子阻隔型低能电子探测器件制造技术

技术编号:18762509 阅读:56 留言:0更新日期:2018-08-25 09:54
本发明专利技术涉及一种α粒子阻隔型低能电子探测器件。包括一端开口的外壳、真空密封窗、α粒子阻隔层及电子探测装置;真空密封窗位于外壳开口端,与外壳形成真空腔室;α粒子阻隔层紧贴真空密封窗位于外壳内部,且与外壳绝缘,用于阻隔α粒子穿过;电子探测装置包括电子探测器、高压模块和信号采集模块;所述电子探测器位于外壳内部并与α粒子阻隔层平行,电子探测器与α粒子阻隔层之间的间隔形成飞行腔室;高压模块和信号采集模块位于外壳外部,电子探测器阳极与高压模块连接,电子探测器信号输出端和信号采集模块连接;α粒子穿过真空密封窗进入并停留在α粒子阻隔层的微孔中。解决了现有技术中高氡环境下不能对氚发射低能电子直接探测的缺陷。

【技术实现步骤摘要】
一种α粒子阻隔型低能电子探测器件
本专利技术涉及一种低能电子探测器件,特别是涉及一种α粒子阻隔型低能电子探测器件。
技术介绍
在核能大发展的背景下,反应堆、氚工艺等涉氚场所中氚的操作运用量在数年增加,为了实现人员的安全防护,空气中氚的实时测量成为涉氚操作场所的一项重要的研究内容。在某些特殊的涉氚操作场所,人员操作场所中也含有较高浓度的氡。空气中,氡主要以氡气的形式存在,氚以氚化水蒸汽(HTO)和氚气(HT)的形式存在。氡衰变放出能量为5.47MeV的α粒子,氚衰变放出平均能量为5.67keV的β粒子。两者均为气态,且氡放出的α粒子能量约为氚放出β粒子的1000倍,因此氡的存在给氚的准确测量带了严重的干扰。为了实现氚的实时准确测量,需要对氚放出的β粒子进行准确、高效的测量,文献“杨怀元,吴斌,温雪莲等,气中氡甄别型氚监测仪的研制,核电子学与探测技术,2004,24(6):555-558”公开了一种氡甄别型氚监测仪TAM-V。该系统采用一体化的平行板型丝壁式测氚电离室和镀铝聚酯膜窗平行板型测氡密闭电离室,其核心是利用镀铝聚酯膜密封成双层电离室。镀铝聚酯膜能透过能量较高的α粒子而阻止低能的β粒子,再通过双层电离室氡补偿的方式实现空气中氚监测过程中氡干扰的实时、同步测量与补偿。这种方法是通过总计数中补偿掉氡α得到氚计数的,受氡浓度变化影响较大,氡浓度变化剧烈时补偿算法几乎失效,且探测下限很高,不能有效的用于高氡环境下氚的准确测量。
技术实现思路
本专利技术所要解决的技术问题是提供一种α粒子阻隔型低能电子探测器件,用以解决现有技术中高氡环境下不能对氚发射低能电子直接探测的缺陷。为解决上述技术问题,本专利技术所采用的技术方案是提供一种α粒子阻隔型低能电子探测器件,其特殊之处在于:包括一端开口的外壳、真空密封窗、α粒子阻隔层及电子探测装置;上述真空密封窗位于外壳开口端,与外壳形成真空腔室;上述α粒子阻隔层紧贴真空密封窗位于外壳内部并沿外壳横截面设置,且与外壳绝缘,用于阻隔α粒子穿过;上述真空密封窗大小与α粒子阻隔层一致,用以密封α粒子阻隔层上的小孔;上述电子探测装置包括电子探测器、高压模块和信号采集模块;上述电子探测器位于外壳内部并与α粒子阻隔层平行,电子探测器与α粒子阻隔层之间的间隔形成飞行腔室;高压模块和信号采集模块位于外壳外部,电子探测器与高压模块和信号采集模块连接;上述电子探测器工作在脉冲模式下,通过高压模块,获得高压并将测量信号输出;通过信号采集模块将电子探测器件的脉冲信号提取并处理、显示;上述α粒子阻隔层包括相互叠放的若干层微通孔板,不同层微通孔板上的微孔轴向具有夹角,α粒子穿过真空密封窗进入并停留在α粒子阻隔层的微孔中。优选地,飞行腔室内靠近α粒子阻隔层的一端设置阴极,靠近电子探测器的一端设置阳极,α粒子阻隔层、飞行腔室的阴极、阳极及电子探测器平行放置;阴极接直流高压电源,阴极、阳极均与外壳绝缘。优选地,上述微通孔板的微孔为圆柱形、立方体形或锥形等,每层微通孔板上的微孔之间,轴向平行。优选地,上述微通孔板的材料为对0.1MeV以下的低能电子反散射概率大于0.3的高原子序数材料,微通孔板的厚度为10~20μm;微通孔板上的多层孔道,开孔直径为0.5~1μm,开孔密度为2.5×105个/mm2。优选地,上述α粒子阻隔层包括相互叠放的两层微通孔板,两层微通孔板微孔之间的锐角夹角θ满足(d1/cosθ-H/sinθ)>Rα,且(d2·cosθ-H·cotθ)>Rα;其中l1第一层微通孔板厚,l2为第二层微通孔板厚,H为微孔直径,d1为α粒子径迹在第一层微通孔板管壁中的最小距离,d2为α粒子径迹在第二层微通孔板管壁中的最小距离;Rα为该能量α粒子在微通孔板中的最大射程。优选地,该探测器还包括设置在外壳与α粒子阻隔层、阴极及阳极之间的绝缘层,上述绝缘层的材料为耐高压(>1KV)且放气少的绝缘材料。优选地,上述真空密封窗的厚度为10~20nm,为具有较好阻氚性能的材料(常温下氚漏率低于10-14mol-1·m-1·s-1·Pa-1/2)。优选地,飞行腔室的阳极和阴极为开窗式平板型电极或平行丝电极,材料是耐高压且导电性能良好的材料(电阻率≤2.9×10-8Ω·m)。优选地,电子探测器为对keV级低能电子敏感的探测器件,包括半导体探测器或表面涂抹荧光涂层的闪烁体探测器。优选地,上述外壳上镶嵌有高压电缆接头及信号电缆接头;高压电缆接头壳体与所述外壳连接,电缆芯与壳体绝缘,通过导线与电子探测器阳极连接;信号电缆接头壳体与所述外壳连接,电缆芯与壳体绝缘,通过导线与所述电子探测器信号输出端连接。优选地,上述外壳为圆柱体或立方体结构;上述α粒子阻隔层为与外壳对应的圆柱体或立方体结构,上下底面直径或边长为1~5cm;上述真空密封窗为圆形或四边形且直径或边长大于(略大于)α粒子阻隔层的直径或边长;当飞行腔室内不设置电机时,飞行腔室的高度为0.1~1cm,当设置电极时,飞行腔室的高度为5~10cm;微通孔板的材料为金或银;绝缘层材料为如陶瓷或聚四氟乙烯;真空密封窗材料为Al2O3;飞行腔室阳极与阴极的材料为铜或铝;所述外壳的材料是不锈钢。本专利技术的有益效果是:1、本专利技术由真空密封窗、外壳、α粒子阻隔层、电子探测装置组成。真空密封窗和外壳确保微通孔板微孔内为真空,α粒子和电子运动不受空气的干扰,且确保低能电子能够穿透且带有一定速度进入微通孔板微孔;α粒子阻隔层在将α粒子阻挡的同时确保了电子进入飞行腔室,直接飞入或经过电场加速后被电子探测器所收集,原理简单,易与实现,纯粹的物理设计,没有功耗和电子设计等其他方面的要求;2、本专利技术电子探测器,可对低能电子进行准确测量。电子探测器将低能电子进行收集,产生脉冲信号或电流信号,通过信号采集模块进行分析,进而实现电子能量、能谱等信息的测量;3、本专利技术利用了α粒子、电子与物质相互作用的原理不同,将复杂环境下的测量对象直接筛选,而不是像
技术介绍
中提到的,两种射线都进入探测系统、再通过信号处理的方式扣除α的影响,探测系统直接只对低能电子进行探测。避免了人为因素和电子学系统的引发误差的可能,从根本上实现了扣除α粒子后测量氚发射电子的难题,因此可用于高氡环境下氚的绝对实时测量,且不受外界氡浓度的变化的干扰。附图说明图1是本专利技术α粒子阻隔型低能电子探测器件结构图。图2是本专利技术α粒子阻隔层一种可能结构的工作原理图。图中,1-真空密封窗,2-外壳,3-α粒子阻隔层,4-飞行腔室阴极,5-飞行腔室阳极,6-绝缘层,7-直流高压电源,8-电子探测器,9-高压电缆接头,10-信号电缆接头,11-高压模块,12-信号采集模块,13-初始电子,14-初始α粒子,15-穿过α阻隔层的电子,16-被电场加速的电子,17-飞行腔室的电场线。具体实施方式以下结合附图及具体实施例,对本专利技术作进一步的详细描述。从图1可以看出,本专利技术一种α粒子阻隔型低能电子探测器件包括真空密封窗1、外壳2、α粒子阻隔层3、飞行腔室、电子探测装置五部分。其中飞行腔室内还可以包括飞行腔室阴极4及飞行腔室阳极5;α粒子阻隔层3、飞行腔室阴极4、飞行腔室阳极5与外壳之间设置绝缘层6;电子探测装置包括电子探测器8,高压模块11,信号采集模块本文档来自技高网
...

【技术保护点】
1.一种α粒子阻隔型低能电子探测器件,其特征在于:包括一端开口的外壳、真空密封窗、α粒子阻隔层及电子探测装置;所述真空密封窗位于外壳开口端,与外壳形成真空腔室;所述α粒子阻隔层紧贴真空密封窗位于外壳内部并沿外壳横截面设置,且与外壳绝缘,用于阻隔α粒子穿过;所述电子探测装置包括电子探测器、高压模块和信号采集模块;所述电子探测器位于外壳内部并与α粒子阻隔层平行,电子探测器与α粒子阻隔层之间的间隔形成飞行腔室;高压模块和信号采集模块位于外壳外部,电子探测器阳极与高压模块连接,电子探测器信号输出端和信号采集模块连接;所述α粒子阻隔层包括相互叠放的若干层微通孔板,不同层微通孔板上的微孔轴向具有夹角,α粒子穿过真空密封窗进入并停留在α粒子阻隔层的微孔中。

【技术特征摘要】
1.一种α粒子阻隔型低能电子探测器件,其特征在于:包括一端开口的外壳、真空密封窗、α粒子阻隔层及电子探测装置;所述真空密封窗位于外壳开口端,与外壳形成真空腔室;所述α粒子阻隔层紧贴真空密封窗位于外壳内部并沿外壳横截面设置,且与外壳绝缘,用于阻隔α粒子穿过;所述电子探测装置包括电子探测器、高压模块和信号采集模块;所述电子探测器位于外壳内部并与α粒子阻隔层平行,电子探测器与α粒子阻隔层之间的间隔形成飞行腔室;高压模块和信号采集模块位于外壳外部,电子探测器阳极与高压模块连接,电子探测器信号输出端和信号采集模块连接;所述α粒子阻隔层包括相互叠放的若干层微通孔板,不同层微通孔板上的微孔轴向具有夹角,α粒子穿过真空密封窗进入并停留在α粒子阻隔层的微孔中。2.根据权利要求1所述的一种α粒子阻隔型低能电子探测器件,其特征在于:飞行腔室内靠近α粒子阻隔层的一端设置阴极,靠近电子探测器的一端设置阳极,α粒子阻隔层、飞行腔室的阴极、阳极及电子探测器平行放置;阴极接直流高压电源,阴极、阳极均与外壳绝缘。3.根据权利要求2所述的一种α粒子阻隔型低能电子探测器件,其特征在于:所述微通孔板的微孔为圆柱形、立方体形或锥形,每层微通孔板上的微孔之间,轴向平行。4.根据权利要求3所述的一种α粒子阻隔型低能电子探测器件,其特征在于:所述微通孔板的材料为对0.1MeV以下的低能电子反散射概率大于0.3的高原子序数材料,微通孔板的厚度为10~20μm;微通孔板上的多层孔道,开孔直径为0.5~1μm,开孔密度为2.5×105个/mm2。5.根据权利要求4所述的一种α粒子阻隔型低能电子探测器件,其特征在于:所述α粒子阻隔层包括相互叠放的两层微通孔板,两层微通孔板微孔之间的锐角夹角θ满足(d1/cosθ-H/sinθ)>Rα,且(d2·cosθ-H·cotθ)>R...

【专利技术属性】
技术研发人员:赵括陈亮欧阳晓平过惠平阮金陆何世熠张忠兵
申请(专利权)人:西北核技术研究所
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1