一种应用于高铁机房的巡检方法及巡检机器人系统技术方案

技术编号:18273910 阅读:67 留言:0更新日期:2018-06-23 16:47
本发明专利技术公开了一种应用于高铁机房的巡检方法,包括如下步骤:(1)巡检机器人启动,开机状态自检及设备初始化;(2)读取巡检任务文件,获取需检测的目标机柜号,从机柜位置数据库中导出待检测机柜的位置信息;(3)巡检机器人根据激光雷达数据进行实时定位,进行全局路径规划与局部路径规划,依次到达目标机柜位置;当巡检机器人到达目标机柜位置时,进行环境检测,并根据深度学习神经网络模型及图像识别算法对机柜的状态进行检测。本发明专利技术同时提供了相应的巡检机器人系统,可以用于对高铁机房设备进行自动定时巡检,并可在紧急情况发生时远程控制完成紧急巡检任务。

A patrol inspection method and patrol robot system applied in high-speed railway engine room

The invention discloses a inspection method applied to the high speed rail machine room, which includes the following steps: (1) the inspection of the robot starting, the self checking of the starting state and the initialization of the equipment; (2) reading the inspection task files, obtaining the target cabinet number to be detected, and guiding the location information of the cabinet to be detected from the database of the cabinet position; (3) inspection machine. According to the lidar data, the global path planning and local path planning are carried out to reach the target cabinet position in turn. When the inspection robot reaches the location of the target cabinet, the environment is detected, and the state of the cabinet is detected by the depth learning neural network model and the image recognition method. The invention also provides the corresponding inspection robot system, which can be used for automatic timing inspection for the equipment of the high speed rail machine room, and the emergency inspection task can be completed by remote control when the emergency occurs.

【技术实现步骤摘要】
一种应用于高铁机房的巡检方法及巡检机器人系统
本专利技术涉及一种应用于高铁机房的巡检方法,同时涉及一种应用于高铁机房的巡检机器人系统。
技术介绍
长期以来,我国的铁路信号机房均采用人工巡检的作业方式,而且目前在我国铁路系统存在大量无人值守信号机房。日常设备机房巡查时人员必须到达现场,造成人力、物力的浪费,人工巡视的及时性受到各种条件制约,人工巡视效果也会受巡检人员的业务能力、工作经验、精神状态等诸多因素的制约,漏检、误检的情况时有发生,稍有不慎就会造成重大经济损失,甚至影响铁路运输安全。并且目前大多铁路信号机房均采用传统的固定式、离散式在线检测系统,不能实现对机房内情况完全覆盖,当发生紧急情况时,无法第一时间采集现场情况并将现场情况传递到监控中心,从而无法在必要时对机房或机柜的特定部位采取有效处理措施。因此,需要一种连续、实时的自动巡检系统,将巡检人员从繁重的劳动中解脱出来,节约人力及物力成本,提高机房巡检的准确性。
技术实现思路
本专利技术所要解决的首要技术问题在于提供一种应用于高铁机房的巡检方法。本专利技术所要解决的另一技术问题在于提供一种应用于高铁机房的巡检机器人系统。为了实现上述专利技术目的,本专利技术采用下述技术方案:根据本专利技术实施例的第一方面,提供了一种应用于高铁机房的巡检方法,包括如下步骤:(1)巡检机器人启动,开机状态自检及设备初始化;(2)读取巡检任务文件,获取需检测的目标机柜号,从机柜位置数据库中导出待检测机柜的位置信息;(3)巡检机器人根据激光雷达采集的环境特征进行实时定位,进行全局路径规划与局部路径规划,依次到达目标机柜位置;当巡检机器人到达目标机柜位置时,进行环境检测,并对机柜的状态进行检测。其中较优地,在步骤(3)中,加载高铁机房的地图,通过激光雷达感知的环境特征,提取激光雷达测量得到的激光数据中的局部特征信息,并利用SLAM技术将局部特征信息融合成一个统一的全局特征地图,进而实现对巡检机器人的实时定位,并更新到地图中;然后根据已获取的地图,导航模块根据自身当前位置、目的地位置及可通行性的分析,并结合巡检任务的需求,对全局路径和局部路径进行规划,选择快捷的路径进行巡检。其中较优地,在步骤(3)使用预先生成的包含深度学习神经网络模型的状态灯识别算法对机柜状态灯进行检测;并且,包含不同深度学习神经网络模型的状态灯识别算法分别与相应机柜号及高中低位置关联存储。其中较优地,在步骤(3)中所使用的深度学习神经网络模型的训练过程如下:S1:采集每个机柜的视频,按照机柜类别进行视频分类及编号;对采集的视频进行切片,分割成图片的格式;S2:建立训练的数据集,将所有的机柜状态灯分为六大类:绿灯、红灯、黄灯、白灯、灭灯、灯组;S3:根据对机柜状态灯的分类,对切片后的图片进行标注;S4:将数据集分为两大类,分别是训练数据集和测试数据集;S5:对于训练数据集,定义深度学习神经网络模型,设计合适的神经网络结构;并定义损失函数,用来描述神经网络的训练效果;S6:将训练数据集数据传入深度学习神经网络模型,进行模型参数训练,得到深度学习神经网络模型的连接权值和偏置参数;判断损失函数是否收敛,若是,输出深度学习神经网络模型,否则,继续训练;S7:将测试数据集传入训练后的深度学习神经网络模型,判断准确率是否大于设定阈值,若是,获得最终的深度学习神经网络模型,结束训练流程;否则,返回S6重新训练。其中较优地,在步骤(3)中,包括如下步骤:(31)判断目标机柜是否走完,若结果为否,则执行步骤(32);若结果为是,执行步骤(34);(32)开始到达下一个目标机柜位置,通过激光雷达进行实时定位,判断机器人是否成功到达,当成功到达时,采集声音数据和温湿度数据,并依次采集低位置、中位置及高位置的机柜状态数据,然后进入步骤(33);当没有成功到达时,记录失败点机柜号,然后进入步骤(33);(33)读取机器人的电量值,判断是否需要充电;若是,则机器人回到充电桩附近,开始自主充电;若否,则返回步骤(31);(34)判断是否有失败的目标点位置,若结果为否,则直接进入步骤(4):回到充电桩位置,进行自主充电,结束巡检;若结果为是,执行步骤(35):重新组合失败点位置,依次到达失败的目标点,当成功到达目标机柜时,采集声音数据和温湿度数据,并依次采集低位置、中位置及高位置的机柜状态数据,如果有未成功到达的失败点,则再次记录失败点机柜号,然后进入步骤(4)。其中较优地,在步骤(32)和(35)中,所采集的机柜状态数据包括状态灯检测数据;在对机柜状态灯进行检测时,包括下述步骤:根据机柜号及摄像头位置选择与之对应的状态灯识别算法,不同的状态灯识别算法中包括不同的深度学习神经网络模型;状态灯识别算法分为两大类,分别对应于单灯识别算法和灯组识别算法;对于单灯识别算法,首先进行分类,判断状态灯是绿灯、红灯、黄灯、白灯、灭灯中的哪一种;然后进行定位,得到每个灯的像素位置;统计同一个机柜中不同位置的不同种类的灯的数量;对于灯组识别算法,首先判断灯组的像素位置,然后寻找灯组中每个灯的轮廓,根据轮廓信息统计灯组中灯的数量;最后,统计得到单灯或者灯组的数量之后,与对应的阈值进行比较判断,输出检测结果并保存。根据本专利技术实施例的另一方面,提供了一种用于实现上述巡检方法的巡检机器人系统,包括存储模块、导航模块、感知模块、控制模块、执行模块和通信模块;其中,所述存储模块用于存储高铁机房地图及机柜位置数据库;所述导航模块用于根据激光雷达感知的环境特征在地图中实现机器人的实时定位,并用于对待检测目标机柜进行全局路径规划与局部路径规划,生成路径规划信息;所述感知模块用于采集环境参数及机柜状态参数;所述感知模块包括图像采集单元,所述图像采集单元用于采集机柜低位置、中位置和高位置的视频图像;所述感知模块还用于根据包括深度学习神经网络模型的图像识别算法对状态灯进行检测;所述控制模块用于接收所述导航模块发送的路径规划信息和所述感知模块采集的环境参数及机柜状态参数,做出相对应的决策,并输出控制指令到所述执行模块;所述执行模块包括底盘电机和升降电机;所述底盘电机用于驱动机器人移动;所述升降电机用于驱动升降平台进行升降,使所述图像采集单元升降到不同高度;所述通信模块用于发送机器人的巡检结果,并用于接收巡检任务文件。其中较优地,所述控制模块同时运行两个线程,分别进行机器人导航控制及机柜状态检测。其中较优地,所述感知模块还包括声音传感器和温湿度传感器。其中较优地,还包括用于给所述控制模块、所述感知模块、所述导航模块、所述执行模块和所述通信模块进行供电的电源模块。本专利技术所提供的高铁机房巡检方法,能够对机房状态进行连续、动态监测,获得机房及设备的视频、图片、音频及环境温湿度等各种数据,实现对机房往复不间断的巡检。本专利技术同时提供了相应的巡检机器人系统,可以用于对高铁机房设备进行自动定时巡检,并可在紧急情况发生时接受远程控制完成紧急巡检任务。附图说明图1为本专利技术所提供的巡检方法的基本步骤流程图;图2为本专利技术所提供的巡检方法的具体流程图;图3为针对状态灯识别的深度学习神经网络训练流程图;图4为机柜状态灯的识别算法流程图;图5为本专利技术所使用的巡检机器人系统的组成框图示例。具体实施方式下面结合附图和具体实施例对本文档来自技高网...
一种应用于高铁机房的巡检方法及巡检机器人系统

【技术保护点】
1.一种应用于高铁机房的巡检方法,其特征在于包括如下步骤:(1)巡检机器人启动,开机状态自检及设备初始化;(2)读取巡检任务文件,获取需检测的目标机柜号,从机柜位置数据库中导出待检测机柜的位置信息;(3)巡检机器人根据激光雷达采集的环境特征进行实时定位,进行全局路径规划与局部路径规划,依次到达目标机柜位置;当巡检机器人到达目标机柜位置时,进行环境检测,并对机柜的状态进行检测。

【技术特征摘要】
1.一种应用于高铁机房的巡检方法,其特征在于包括如下步骤:(1)巡检机器人启动,开机状态自检及设备初始化;(2)读取巡检任务文件,获取需检测的目标机柜号,从机柜位置数据库中导出待检测机柜的位置信息;(3)巡检机器人根据激光雷达采集的环境特征进行实时定位,进行全局路径规划与局部路径规划,依次到达目标机柜位置;当巡检机器人到达目标机柜位置时,进行环境检测,并对机柜的状态进行检测。2.如权利要求1所述的巡检方法,其特征在于:在步骤(3)中,加载高铁机房的地图,通过激光雷达感知的环境特征,提取激光雷达测量得到的激光数据中的局部特征信息,并利用SLAM技术将局部特征信息融合成一个统一的全局特征地图,进而实现对巡检机器人的实时定位,并更新到地图中;然后根据已获取的地图,导航模块根据自身当前位置、目的地位置及可通行性的分析,并结合巡检任务的需求,对全局路径和局部路径进行规划,选择快捷的路径进行巡检。3.如权利要求1所述的巡检方法,其特征在于:在步骤(3)使用预先生成的包含深度学习神经网络模型的状态灯识别算法对机柜状态灯进行检测;并且,包含不同深度学习神经网络模型的状态灯识别算法分别与相应机柜号及高中低位置关联存储。4.如权利要求3所述的巡检方法,其特征在于:在步骤(3)中所使用的深度学习神经网络模型的训练过程如下:S1:采集每个机柜的视频,按照机柜类别进行视频分类及编号;对采集的视频进行切片,分割成图片的格式;S2:建立训练的数据集,将所有的机柜状态灯分为六大类:绿灯、红灯、黄灯、白灯、灭灯、灯组;S3:根据对机柜状态灯的分类,对切片后的图片进行标注;S4:将数据集分为两大类,分别是训练数据集和测试数据集;S5:对于训练数据集,定义深度学习神经网络模型,设计合适的神经网络结构;并定义损失函数,用来描述神经网络的训练效果;S6:将训练数据集数据传入深度学习神经网络模型,进行模型参数训练,得到深度学习神经网络模型的连接权值和偏置参数;判断损失函数是否收敛,若是,输出深度学习神经网络模型,否则,继续训练;S7:将测试数据集传入训练后的深度学习神经网络模型,判断准确率是否大于设定阈值,若是,获得最终的深度学习神经网络模型,结束训练流程;否则,返回S6重新训练。5.如权利要求1所述的巡检方法,其特征在于在步骤(3)中,包括如下步骤:(31)判断目标机柜是否走完,若结果为否,则执行步骤(32);若结果为是,执行步骤(34);(32)开始到达下一个目标机柜位置,通过激光雷达进行实时定位,判断机器人是否成功到达,当成功到达时,采集声音数据和温湿度数据,并依次采集低位置、中位置及高位置的机柜状态数据,然后进入步骤(33);当没有成功到达时,记录失败点机柜号,然后进入步骤(33);(33)读取机器人的电量值,判断是否需要充电;若是...

【专利技术属性】
技术研发人员:宗孝鹏
申请(专利权)人:北京飞鸿云际科技有限公司
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1