航天器用分子污染吸附控制结构及其控制方法技术

技术编号:18097156 阅读:49 留言:0更新日期:2018-06-03 01:46
本发明专利技术公开了一种航天器用分子污染吸附控制结构,包括分子污染吸附多孔结构层、绝热层和低放气材料层共三层结构,其中绝热层设置另两个层之间且绝热层侧面向上伸出,将多孔材料层的侧面进行包覆。本发明专利技术的分子污染控制装置,可有效的实现有机分子污染的吸附,对一些敏感光学镜头的分子污染阻挡,效率可达90%以上。

【技术实现步骤摘要】
航天器用分子污染吸附控制结构及其控制方法
本专利技术属于航天器空间环境效应防护
,具体而言,本专利技术涉及一种航天器用分子污染控制结构材料,此外也涉及一种利用该控制结构材料进行分子污染控制的方法。
技术介绍
目前,航天器实际处于的空间环境主要是指航天器在轨运行过程中所遇到的自然环境和人工环境,包括高真空环境、冷黑环境、太阳电磁辐射、带电粒子辐射、中性大气、空间碎片与微流星体、等离子体、微振动、微重力、人工辐射(核爆炸辐射和激光辐射等)以及载人密封舱内的细菌、湿度等环境。在航天器处于空间环境中时,由于材料放气、发动机羽流等造成的分子污染沉积是航天器在轨运行期间需要长期经受的环境因素之一。极少量的分子污染经长时间积累,就可能造成航天器功能的退化或失效,例如,沉积在航天器热控表面上的分子污染膜会改变热控涂层的辐射和吸收系数,导致航天器表面温度的改变;沉积在太阳电池阵上的分子污染膜会减少太阳电池吸收到的光线,导致太阳电池阵输出功率下降;沉积在光学表面上的分子污染膜会降低光学表面的透射率,降低光学图像的清晰度等等。造成分子污染的原因包括使用不适宜的高放气材料,未对污染敏感部件进行专门的污染控制设计,加工、制造、组装和测试期间引入的外来污染物等。航天器在轨运行后难于对表面沉积污染物进行有效的清理,新一代高性能、长寿命、高可靠性和灵活多样的航天器的应用对污染控制提出了更高的要求,因此在航天器设计、总装、测试、运输、发射和在轨运行全过程必须对污染进行监测。此外,由于具有多孔结构的材料的比表面积较大,可以产生较强吸附力。尤其在空间高真空环境下,多孔结构的空洞内由于所吸附的气体释放出去之后,将产生较强吸附力的大面积吸附表面,可对分子污染产生吸附,鉴于此,利用多孔材料构造空间环境下的分子材料污染防护材料是非常重要的。
技术实现思路
基于分子污染容易在航天器上温度比较低的地方沉积的特性和多孔材料具有较强吸附能力的特性,本专利技术提供了一种航天器用分子污染吸附控制结构,利用控制结构的不同部位温度差的变化,控制分子污染的传输并将其吸附,使其不再对航天器敏感部位,尤其是光学镜头等位置产生污染。另一方面,本专利技术提供了一种航天器用分子污染吸附控制方法,该方法利用上述分子污染吸附材料,进行航天器部件的分子污染控制。为此,本专利技术采用了如下的技术方案:航天器用分子污染吸附控制结构,包括分子污染吸附多孔结构层、绝热层和低放气材料层共三层结构,其中绝热层设置在多孔材料层和低放气材料层之间且绝热层侧面向上伸出,将多孔材料层的侧面进行包覆,分子污染吸附多孔材料为分子筛、碳纳米管、修饰后的泡沫金属、气凝胶等多孔材料,绝热层为无机非金属材料或者空间环境稳定性好的有机非金属材料,低放气材料层选用金属类或合金类材料其中,无机非金属材料为陶瓷材料、泡沫玻璃、气凝胶毡等材料。其中,有机非金属材料为经过地面真空放气处理的聚酰亚胺材料、泡沫塑料和泡沫橡胶等。其中,金属类材料如铝、钢等,合金类材料为不锈钢、钛合金、铝合金等。其中,低放气材料层包括无放气材料层。其中,分子污染吸附多孔材料与绝热材料之间可以通过粘合或者机械方式固定,绝热材料和低放气材料层之间也可以通过粘合或机械方式连接。航天器用分子污染吸附控制方法,包括以下步骤:根据航天器使用环境和航天器待保护部件的设置位置,利用上述控制结构,将分子污染吸附多孔结构的一面即背阳面用于分子污染来源方向的遮挡,保持较低的温度,使分子污染沉积下来,实现对分子污染的吸附固定;将低放气材料层的面即向阳面面对温度相对较高的方向,以使分子污染不会沉积。进一步地,根据对日观测望远镜镜头的观测环境,以分子污染吸附多孔结构的背阳面面对分子污染来源方向,保持较低的温度,使分子污染沉积下来,而将低放气材料层或无放气材料层的向阳面面对温度相对较高的方向,以使分子污染不会沉积。利用本专利技术的分子污染控制装置,可以有效的实现有机分子污染的吸附,对一些敏感光学镜头,如对日观测光学镜头的分子污染阻挡,效率可达90%以上。附图说明图1为本专利技术的航天器用分子污染吸控制结构的示意图;图2为使用本专利技术的航天器用分子污染吸控制结构进行对日观测光学镜头分子污染控制的示意图。具体实施方式以下结合附图对本专利技术作进一步详细说明,但这仅仅是示例性的,并不旨在对本专利技术的保护范围进行任何限制。当前,大量的数据表明,航天器的分子污染物主要是一些有机物分子,如邻苯二甲酸甲酯等,这些分子污染物具有较强的输水性。同时,分子污染容易在温度较低的地方吸附。基于此,本专利技术的一具体实施方式的航天器用分子污染吸附控制结构,包括碳纳米管分子污染吸附多孔结构层、SiO2绝热层和不锈钢的低放气材料层共三层结构,其中SiO2绝热层设置在碳纳米管多孔材料层和不锈钢材料层之间且SiO2绝热层侧面向上伸出,将碳纳米管多孔材料层的侧面进行包覆。该结构的制造过程如下:首先是制备分子污染吸附多孔结构,以碳纳米管多孔材料为例,可将碳纳米管组装在泡沫金属中或者用粘结剂将碳纳米管粘结并固化成一定的形状;其次,将碳纳米管多孔材料利用粘合或物理机械固定的方式固定在SiO2绝热层上,SiO2绝热层可以采用溶胶凝胶法制备SiO2气凝胶或者采用陶瓷烧结法制备SiO2陶瓷;第三,在绝热层外表面利用粘合方法或者物理机械方法固定一层低放气材料层如金属铝板或者铝合金等。在另一具体实施方式中,用于吸附分子污染的多孔结构具有亲油疏水特性,采用分子筛多孔材料;用于隔热的绝热层使用Al2O3陶瓷材料,低放气材料层为铝合金。本专利技术的上述航天器用分子污染吸附控制结构,主要用于航天器部件或局部部件的分子污染控制上,在通常使用中,将分子污染控制装置温度较高的一面朝向航天器污染敏感表面,多孔结构一面作为其背面。以对日观测望远镜镜头为例,镜头为污染敏感表面,使用本专利技术的航天器用分子污染吸附多孔控制结构的使用状态如图2所示。其中,将分子污染吸附多孔结构的一面即背阳面用于分子污染来源方向的遮挡,保持较低的温度,使分子污染沉积下来,实现对分子污染的吸附固定;将低放气材料层的面即向阳面面对温度相对较高的方向,以使分子污染不会沉积。由此,污染吸附装置的两个不同位置之间能够较好的实现温度的绝缘,分子污染吸附的一面是多孔亲油疏水性结构,靠近分子污染敏感的一面,即分子吸附的另一面,采用低放气率材料,或无污染材料,通过其间的一层阻热层,实现分子污染控制装置上下两面间的温度绝缘。尽管上文对本专利技术专利的具体实施方式给予了详细描述和说明,但是应该指明的是,我们可以依据本专利技术专利的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书及附图所涵盖的精神时,均应在本专利技术专利的保护范围之内。本文档来自技高网
...
航天器用分子污染吸附控制结构及其控制方法

【技术保护点】
航天器用分子污染吸附控制结构,包括分子污染吸附多孔结构层、绝热层和低放气材料层共三层结构,其中绝热层设置在多孔材料层和低放气材料层之间且绝热层侧面向上伸出,将多孔材料层的侧面进行包覆,分子污染吸附多孔材料为分子筛、碳纳米管、修饰后的泡沫金属、气凝胶的多孔材料,绝热层为无机非金属材料或者空间环境稳定性好的有机非金属材料,低放气材料层选用金属类或合金类材料。

【技术特征摘要】
1.航天器用分子污染吸附控制结构,包括分子污染吸附多孔结构层、绝热层和低放气材料层共三层结构,其中绝热层设置在多孔材料层和低放气材料层之间且绝热层侧面向上伸出,将多孔材料层的侧面进行包覆,分子污染吸附多孔材料为分子筛、碳纳米管、修饰后的泡沫金属、气凝胶的多孔材料,绝热层为无机非金属材料或者空间环境稳定性好的有机非金属材料,低放气材料层选用金属类或合金类材料。2.如权利要求1所述的航天器用分子污染吸附控制结构,其中,无机非金属材料为陶瓷材料、泡沫玻璃或气凝胶毡。3.如权利要求1所述的航天器用分子污染吸附控制结构,其中,有机非金属材料为经过地面真空放气处理的聚酰亚胺材料、泡沫塑料或泡沫橡胶。4.如权利要求1所述的航天器用分子污染吸附控制结构,其中,金属类材料为铝或钢,合金类材料为不锈钢、钛合金或铝合金。5.如权利要求1所述的航天器用分子污染吸附控制结构,其中,低放...

【专利技术属性】
技术研发人员:沈自才刘宇明刘业楠夏彦田东波郎冠卿
申请(专利权)人:北京卫星环境工程研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1