确定故障类型的方法和装置制造方法及图纸

技术编号:17659920 阅读:43 留言:0更新日期:2018-04-08 11:36
本发明专利技术公开了一种确定故障类型的方法和装置,该方法包括:对多个用户中每个用户在预设周期内产生的运行数据进行在线实时计算,获得每个用户在预设周期内产生的运行数据对应的运行特征值;接收故障分类请求,故障分类请求用于请求确定目标用户在目标时刻之前所产生的故障的故障类型;根据故障分类请求,基于故障分类模型和目标用户在至少一个预设周期内的运行特征值,确定目标用户在目标时刻之前所产生的故障的故障类型。本发明专利技术的确定故障类型的方法,通过在线实时计算用户产生的运行数据的运行特征值,在接收到用户投诉时,将运行特征值与故障分类模型进行匹配,确定用户产生故障的故障类型,该流程为在线的流程,处理速度快,人工成本低。

【技术实现步骤摘要】
确定故障类型的方法和装置
本申请涉及数据处理领域,并且更具体地,涉及一种确定故障类型的方法和装置。
技术介绍
随着电信网络服务在管理方面的不断成熟,在技术方面的不断发展,电信网络业务种类越来越丰富,市场竞争越来越激烈。运营商意识到要提高终端用户的满意度,必须从用户使用的角度来衡量网络服务的好坏。为此,运营商以及电信设备制造商专门制定了一系列的指标,例如,关键性能指标(KeyPerformanceIndicator,KPI)和关键质量指标(KeyQualityIndicator,KQI)等,用于评估用户的网络服务的质量和网络设备的运行健康状态。KPI的出发点是从网络的角度来揣度用户的感受,其并不能全面反映网络服务的质量。在用KPI体系来衡量网络服务的质量时,经常出现的情况是,整个网络设备的KPI均处于良好的状态,但是用户投诉却逐渐增多。为了进一步提高网络服务的质量,KQI被引入到网络服务的质量的评价体系中来。KQI是主要针对不同业务提出贴近用户感受的业务质量参数。KQI的本质是一些关键业务的端到端的服务质量,例如视频业务的流畅程度、清晰度、语音和视频的同步程度等。KQI在一定程度上提高本文档来自技高网...
确定故障类型的方法和装置

【技术保护点】
一种确定故障类型的方法,其特征在于,包括:对多个用户中每个用户在预设周期内产生的运行数据进行在线实时计算,获得所述每个用户在所述预设周期内产生的所述运行数据对应的运行特征值;接收故障分类请求,所述故障分类请求用于请求确定目标用户在目标时刻之前所产生的故障的故障类型,所述目标用户为所述多个用户中的任意一个用户;根据所述故障分类请求,基于故障分类模型和所述目标用户在至少一个所述预设周期内的运行特征值,确定所述目标用户在所述目标时刻之前所产生的故障的故障类型,其中,所述故障分类模型是根据已知故障类型的训练数据进行训练得到的。

【技术特征摘要】
1.一种确定故障类型的方法,其特征在于,包括:对多个用户中每个用户在预设周期内产生的运行数据进行在线实时计算,获得所述每个用户在所述预设周期内产生的所述运行数据对应的运行特征值;接收故障分类请求,所述故障分类请求用于请求确定目标用户在目标时刻之前所产生的故障的故障类型,所述目标用户为所述多个用户中的任意一个用户;根据所述故障分类请求,基于故障分类模型和所述目标用户在至少一个所述预设周期内的运行特征值,确定所述目标用户在所述目标时刻之前所产生的故障的故障类型,其中,所述故障分类模型是根据已知故障类型的训练数据进行训练得到的。2.根据权利要求1所述的方法,其特征在于,所述对多个用户中每个用户在预设周期内产生的运行数据进行在线实时计算,获得所述每个用户在所述预设周期内产生的所述运行数据对应的运行特征值,包括:获取所述每个用户在所述预设周期内产生的所述运行数据,所述运行数据包括信令面运行数据和用户面运行数据中的至少一种;根据所述运行数据,确定运行数据序列,所述运行数据序列包括所述信令面运行数据对应的信令运行数据序列和所述用户面运行数据对应的用户运行数据序列中的至少一种;根据所述运行数据序列和序列特征集,确定所述运行数据对应的所述运行特征值。3.根据权利要求2所述的方法,其特征在于,所述方法还包括:获取所述训练数据,所述训练数据包括信令面训练数据和用户面训练数据中的至少一种;根据所述训练数据,确定训练数据序列,所述训练数据序列包括所述信令面训练数据对应的信令训练数据序列和所述用户面训练数据对应的用户训练数据序列中的至少一种;根据所述训练数据序列和所述序列特征集,确定所述训练数据对应的训练特征值;根据所述训练特征值和所述训练数据对应的故障类型,确定所述故障分类模型。4.根据权利要求2或3所述的方法,其特征在于,所述序列特征集包括挖掘序列特征集和预定义序列特征集中的至少一种。5.根据权利要求4所述的方法,其特征在于,当所述序列特征集包括所述挖掘序列特征集时,所述方法还包括:对所述训练数据序列进行序列挖掘计算,获得所述挖掘序列特征集。6.根据权利要求5所述的方法,其特征在于,所述对所述训练数据序列进行序列挖掘计算,获得所述挖掘序列特征集,包括:根据所述训练数据序列确定多个训练数据子序列;采用序列挖掘算法对所述多个训练数据子序列进行序列挖掘计算,将挖掘出的训练数据子序列确定为所述挖掘序列特征集中的元素。7.根据权利要求6所述的方法,其特征在于,所述序列挖掘算法包括决策树算法和模式搜索树MBT算法中的至少一种。8.根据权利要求1至7中任一项所述的方法,其特征在于,所述根据所述故障分类请求,基于故障分类模型和所述目标用户在至少一个所述预设周期内的运行特征值,确定所述目标用户在所述目标时刻之前所产生的故障的故障类型,包括:根据所述目标时刻,获取所述目标时刻之前所述目标用户的在多个所述预设周期分别对应的所述运行特征值;对多个所述运行特征值进行重构,获得重构后的重构特征值;将所述重构特征值与所述故障分类...

【专利技术属性】
技术研发人员:潘璐伽赫彩凤张建锋
申请(专利权)人:华为技术有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1