可自我寻址自我组装的用于分子生物学分析和诊断的微电子系统及装置制造方法及图纸

技术编号:1764073 阅读:197 留言:0更新日期:2012-04-11 18:40
一台可自我寻址的电子学装置,它包括: 一种基质, 一种第一选择地可寻址的电极,该电极由基质支撑着, 一种渗透层,该渗透层被放置在邻近第一选择地可寻址的电极, 一种操作地连接于第一选择地可寻址的电极的电源,和 一种邻近着渗透层的粘附层。(*该技术在2014年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术有关一种能有效地进行和控制显微形式的多步和多路反应的可自我寻址,自我组装微电子系统的设计、制造和使用。特别地,这些反应包括分子生物学反应,例如核酸杂交、抗体/抗原反应、临床诊断,和生物高分子合成。专利技术背景分子生物学包括核酸和蛋白质分析的各种各样技术,这些大部分技术形成了临床诊断分析的基础。这些技术包括核酸杂交分析,限制性酶分析,基因序列分析,以及核酸和蛋白质的分离和纯化(参见,如J.Sambrook,E.F.Fritsch,和T.Maniatis,分子克隆,实验室手册,第2版,冷泉港实验室印刷,冷泉港,纽约,1989)。大多数分子生物学技术牵连到对大量样品进行无数的操作(例如,移液)。这些通常是复杂而耗时的,常需要高度的精确性。许多种技术因缺少灵敏度,特异性或重复性而限制其的应用。例如,因灵敏度和特异性的问题已极大地限制了核酸杂交的应用。核酸杂交分析通常包括在大量非-目标核酸分子中用探针识别极微量的特异性目标核酸(DNA或RNA)。为了保证高特异性,杂交常在由温度、盐、洗涤剂、溶剂、离液剂和变性剂组合而获得的严格条件下进行。复合的样品核酸杂交分析已在各种滤膜和固体支持物上进行(参见G.A.Beltz et al,酶学方法,Vol 100,Part B,R.Wu,L.Grossman,K.Moldave,Eds.,Academic Press,New York,19章,pp.266-308,1985)。一种形式,即所谓“斑点”杂交,包括非-共价连接目标DNA到一滤膜上,随后滤膜与放射性同位素标记的探针杂交。“斑点”杂交获得了广泛的使用,并发展了多个改进形式(参见M.L.M.Anderson和B.D.Young,核酸杂交-实用方法,B.D.Hames和S.J.Higgins,Eds.,IRL Press,WashingtonDC,第4章,pp.73-111,1985)。这种技术已经发展成能进行基因组突变的复合分析(D.Nanibhushan和D.Rabin,在EPA 0228075,July 8,1987)和检测重叠克隆以及构建基因组图谱(G.A.Evans,在USP #5.219.726.June 15,1993)。另一种形式,即所谓“夹心”杂交,包括共价连接寡聚核苷酸探针到一固体支持物上并用它们捕获和识别多核酸目标(M.Ranki etal.,Gene,21,pp.77-85,1983;A.M.Palva,T.M.Ranki,和H.E.Soderlund,在UKP Application GB 2156074A,Oct.2,1985,T.M.Ranki和H.E.Soderlund在USP # 4,563,419,January 7,1986;A.D.B.Malcolm和J.A.Langdale,in PCTWO 86/03782,July 3,1986;Y.Stabinsky,in USP # 4,751,177,January 14,1988;T.H.Adams et al.,in PCT WO 90/01564,Feb.22,1990 R.B.Wallace et al.,6 NucleicAcid Res 11,p.3543,1979;和B.J.Connor et al.,80Proc Natl Acad Sci USA pp.278-282,1983)。应用通用的核酸杂交形式和严格性控制方法,对检测低拷贝数(例如1-100,000)核酸目标仍是困难的即使使用最灵敏的报告基团(酶,荧光团,放射性同位素)等和与其配套的检测系统(荧光计,发光计,光子计数器,闪烁计数器,等等)。这个困难是由各种与直接探针杂交相关联的本身问题引起的。首先和最严重的困难涉及杂交反应的严格性控制。杂交反应通常在最严格的条件下进行以便获得最高程度的特异性。严格性控制的方法包括初始的在杂交过程以及随后的漂洗过程中应用最适温度、离子强度和交性剂。不幸的是应用这些严格性条件引起用于检测的杂交了的探针/目标复合物的数量显著下降。第二种困难涉及在大多数样品中DNA的高度复杂性,特别在人类基因组DNA样品中。当一个样品由大量与特异目标序列非常相似的序列所组成时,既使最特异性的探针序列与非-目标序列也会有大量部分杂交。第三种困难涉及在探针和它的特异目标间的不适合的杂交动力学因素。既使在最佳条件下,大部分杂交反应是在相当低浓度的探针和目标分子间进行的。此外,探针常不得不与互补链竞争目标核酸。对于大部分现今的杂交形式的第四种困难是高水平的非-特异性背景信号。这是由DNA探针与几乎任何材料的亲和性引起的。这些问题,或单个或几个组合,在上述杂交形式中导致丧失核酸杂交的灵敏度和/或特异性。这是不幸的因为对大多数基于核酸的临床诊断分析而言检测低拷贝数核酸目标是必须的。由于识别低拷贝数核酸目标的困难,研究者们极大地依赖于聚合酶链式反应(PCR)来扩增目标核酸序列(参见M.A.Innis et al.,PCR程序方法和应用的导论,Academic Press,1990),由PCR反应产生的大量目标核酸序列改进了随后的直接核酸探针技术,虽然其代价是加长了步骤和增加了繁琐性。在用直接探针识别低拷贝数目标核酸方面与通常出现的困难相反的一个明显例外是原位杂交技术。这个技术使得低拷贝数的独特核酸序列在单个细胞中被识别。在原位杂交形式中,目标核酸被自然地限制在一个细胞(~20-50μm2)或一个细胞核(~10μm2)区域内具有相对高的局部浓度。而且,探针/目标杂交信号被限制在形态上可区分的区域;这使得该形式杂交比在一个固体支持物上杂交更易区别阳性信号与虚假的或非-特异性的信号。模仿原位杂交,为在显微-形式的多路或矩阵装置(如,DNA芯片)上进行复合样品核酸杂交分析一些新技术发展了起来(参见M.Barinage,253 Science,pp.1489,1991;W.Bains,10 Bio/Technology,pp,757-758,1992)。这些方法通常结合特异的DNA序列到固体支持物非常小的特殊区域上,例如DNA芯片的微井。这些杂交形式是传统的“斑点”和“夹心”杂交体系在显微范围内的改进。显微-形式的杂交能用于进行“杂交测序”(SBH)(参见M.Barinaga,253 Science,pp.1489,1991;W.Bains,10 Bio/Technology,pp,757-758,1992)。SBH应用所有可能的n-核苷酸寡聚体(n-mers)来鉴别在一未知DNA样品中的n-mers,随后通过规则系统分析线性排列产生DNA序列(R.Drmanac和R.Crkvenjakov,Yugoslav Patent Kpplication# 570/87,1987R.Drmanac et al.,4 Genomics,114,1989;Strezoska etal.,88 Proc.Natl.Acad.Sci,UAS 10089 1991;和R.DrmanacR.B.Crkvenjakov,USP#5,202,231,April 13,1993)。有两种形式可进行SBH。第一种形式包括在一个支持物上形成一个所有可能n-mers的列阵,然后本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:MJ赫勒E杜
申请(专利权)人:内诺金有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利