一种全废钢电弧炉洁净化快速冶炼方法技术

技术编号:16866564 阅读:215 留言:0更新日期:2017-12-23 06:54
本发明专利技术属于电弧炉炼钢技术领域,特别涉及一种全废钢电弧炉洁净化快速冶炼方法,适用于30~300t全废钢电弧炉冶炼过程。根据全废钢电弧炉冶炼进程,利用埋在电弧炉炉底侧面耐火材料内部的喷枪在不同冶炼阶段喷吹不同种类介质,增碳助熔阶段利用熔池渗碳加速熔清、提高熔池碳含量;高效脱磷和深度去氮阶段,强化熔池反应高效脱磷、深度脱氮,从而加快全废钢电弧炉冶炼节奏,改善脱磷、脱氮效果,提高钢水洁净度,实现全废钢电弧炉洁净化快速冶炼。

【技术实现步骤摘要】
一种全废钢电弧炉洁净化快速冶炼方法
本专利技术属于电弧炉炼钢
,特别涉及一种全废钢电弧炉洁净化快速冶炼方法。
技术介绍
电弧炉采用全废钢炉料结构冶炼时,冶炼前期以电能输入为主、化学能输入为辅,但单纯依赖大功率输入电能和化学能,其能量利用效率有限;此外,废钢熔化阶段形成的过程熔池粘稠,流动性差,不利于加速废钢熔化。因此,实际电弧炉冶炼全废钢过程中熔清时间较长,大大降低了电弧炉冶炼节奏。另一方面,钢液质量控制一直是全废钢电弧炉冶炼长期面临的技术难题,主要集中在终点钢液磷含量和氮含量控制方面。脱磷方面:电弧炉炼钢采用全废钢炉料结构时,废钢料来源复杂,熔清磷含量波动大;熔清后熔池温度偏高、碳含量低、钢液粘稠度高,且熔池流动速度慢,脱磷动力学条件差,冶炼过程脱磷困难。传统电弧炉冶炼通常采用多次造渣、流渣操作,造成冶炼周期延长、渣量大、钢液过氧化严重。脱氮方面:在全废钢电弧炉采用大功率供电强化废钢熔化的同时,电极放电产生的高温电弧会电离附近空气中N2,致使钢液吸氮能力大幅增加。但由于全废钢电弧炉熔清后熔池碳含量低,供氧强度不足,冶炼后期脱碳期间熔池内产生的CO气泡数量少,不能有效脱除钢液内[N];电弧炉采用底吹Ar搅拌可进行脱氮,但底吹流量较低(30-100NL/min),脱氮作用有限。现有冶炼工艺基本无法实现全废钢电弧炉冶炼深度脱氮。因此,如何实现全废钢电弧炉冶炼快速、有效脱磷和脱氮,生产低磷、低氮高品质钢种,满足低成本洁净化快速冶炼的要求,一直是全废钢电弧炉冶炼亟需解决的技术瓶颈。
技术实现思路
针对上述问题,本专利技术提出一种全废钢电弧炉洁净化快速冶炼方法,根据全废钢电弧炉冶炼进程,通过熔池内部不同种类介质分时段动态轮吹,冶炼前期利用熔池渗碳加速熔清、提高熔池碳含量,冶炼中后期强化熔池反应高效脱磷、深度脱氮,从而加快全废钢电弧炉冶炼节奏,改善脱磷、脱氮效果,提高钢水洁净度,实现全废钢电弧炉洁净化快速冶炼。本专利技术的整体实现方式是:一种全废钢电弧炉洁净化快速冶炼方法,该方法通过安装在电弧炉炉底侧面耐火材料内部的喷枪,利用纯气体、载气A-增碳粉剂、载气B-脱磷粉剂等不同种类介质喷吹模式的在线动态切换,在不同冶炼阶段完成不同种类介质在熔池钢液面以下的轮吹过程,以满足全废钢电弧炉洁净化快速冶炼的要求。在增碳助熔阶段,向熔池内部喷吹载气A-增碳粉剂,提高熔池碳含量,同时加快已形成熔池的钢液流动速度,利用渗碳加速废钢熔化,废钢熔化过程结束后熔池钢液碳含量达到0.40%~2.0%;高效脱磷阶段,向熔池内部喷吹载气B-脱磷粉剂,改善脱磷动力学条件,利用熔态渣粒脱磷体系实现炉内高效脱磷,钢液磷含量≤0.010%;深度去氮阶段,向熔池内部大流量喷吹O2或O2-CO2混合气,强化熔池脱碳,同时利用熔池冶金反应产生的大量CO气泡有效去除钢液内[N];冶炼终点阶段,喷吹载气B-脱磷粉剂防止钢液“回磷”,然后向熔池内部大流量喷吹Ar,均匀熔池成分和温度,最终实现冶炼终点钢液碳含量≥0.10%、磷含量≤40×10-6、氮含量≤50×10-6。本专利技术所使用设备包括控制系统、供气控制阀组、载气A-增碳粉剂喷吹系统、载气B-脱磷粉剂喷吹系统、输送管道、增碳路自动切断阀、脱磷路自动切断阀、喷枪。所述喷枪整体安装在电弧炉炉底侧面耐火材料内部,喷枪出口在钢液面以下0.3~1.0m(图2中距离L1),与水平面夹角为0~60°(图2中角A)。根据电弧炉炉型及容量不同,安装1~6支喷枪,安装喷枪数目根据冶炼工艺要求确定。所述喷枪采用环缝套管设计,中心管采用直管喷嘴,内径尺寸为8~20mm,壁厚2~6mm,环缝间隙1~5mm。本专利技术的技术方案具体包括以下步骤:步骤1:电弧炉出钢后至加入炉料前,控制系统关闭增碳路自动切断阀(图1中13),开启脱磷路自动切断阀(图1中14),利用脱磷输送管道(图1中12)喷吹。喷枪中心管和环缝管喷吹N2,中心管流量为50~500Nm3/h,环缝管流量为50~200Nm3/h,以防止喷枪堵塞、烧损。步骤2:电弧炉加料阶段,继续利用脱磷输送管道(图1中12)喷吹,喷枪中心管喷吹O2,流量为50~300Nm3/h,环缝管喷吹丙烷或天然气,流量为50~200Nm3/h,保证加料过程喷枪正常工作。步骤3:增碳助熔阶段,向废钢熔化已形成的熔池中喷吹碳粉,提高熔池碳含量,利用渗碳加速废钢熔化。执行步骤如下:1)熔化前期,控制系统开启增碳路自动切断阀(图1中13),关闭脱磷路自动切断阀(图1中14),利用增碳输送管道(图1中11)喷吹,喷枪中心管执行载气A-增碳粉剂模式,加速废钢渗碳熔化。此阶段熔池形成较浅,须控制喷粉速率以提高渗碳效率,喷粉速率为1~5kg/min,载气A流量为100~300Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h。2)熔化中期,继续利用增碳输送管道(图1中11)喷吹,喷枪中心管执行载气A-增碳粉剂模式,加此阶段熔池具有一定深度,控制喷粉速率以提高渗碳效率,喷粉速率为5~10kg/min,载气A流量为200~500Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h。3)熔化后期,继续利用增碳输送管道(图1中11)喷吹,喷枪中心管执行载气A-增碳粉剂模式,此阶段熔池较深,强化熔池渗碳和搅拌,喷粉速率为10~20kg/min,载气A流量为200~600Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h。步骤4:管道清扫阶段,利用大流量N2或CO2清扫管道,执行步骤如下:控制系统关闭增碳路自动切断阀(图1中13),开启脱磷路自动切断阀(图1中14),利用脱磷输送管道(图1中12)喷吹,控制喷枪中心管喷吹N2或CO2进行管道清扫,流量400~600Nm3/h,时间20~30s。步骤5:高效脱磷阶段,直接在钢液面以下向熔池内部喷射高速脱磷粉气流,高效脱除钢液中磷,执行步骤如下:继续利用脱磷输送管道(图1中12)喷吹,喷枪中心管执行载气B-脱磷粉剂模式,将载气B和脱磷粉剂直接输入钢液内部并增强熔池搅拌能力,高效脱磷,喷粉速率10-50kg/min,载气流量100-1000Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h。步骤6:深度去氮阶段,利用熔池内部剧烈碳氧反应脱氮,执行步骤如下:利用继续利用脱磷输送管道(图1中12)喷吹,喷枪中心管喷吹O2-CO2混合气,强化熔池脱碳反应,并利用反应产生的大量CO气泡有效去除钢液内[N],中心管喷吹流量为100~1000Nm3/h,混合气中CO2体积流量比例0~100%可调,喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h。步骤7:冶炼终点阶段,防止钢液“回磷”,并进一步脱氮净化钢液,执行步骤如下:1)继续利用脱磷输送管道(图1中12)喷吹,喷枪中心管执行载气B-脱磷粉剂模式,防止钢液“回磷”,喷粉速率5-20kg/min,载气流量100-500Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h,时间1~5min。2)接近冶炼终点和电弧炉出钢过程,继续利用脱磷输送管道(图1中12)喷吹,喷枪中心管喷吹Ar,进一步降低钢液氮含量,提高钢液纯净度,流量为50~600Nm3/h,喷枪环缝管本文档来自技高网...
一种全废钢电弧炉洁净化快速冶炼方法

【技术保护点】
一种全废钢电弧炉洁净化快速冶炼方法,其特征在于:利用纯气体、载气A‑增碳粉剂、载气B‑脱磷粉剂不同种类介质喷吹模式的在线动态切换,在不同冶炼阶段完成不同种类介质在熔池钢液面以下的轮吹过程:在增碳助熔阶段,向熔池内部喷吹载气A‑增碳粉剂,提高熔池碳含量,同时加快已形成熔池的钢液流动速度,利用渗碳加速废钢熔化,废钢熔化过程结束后熔池钢液碳含量达到0.40%~2.0%;高效脱磷阶段,向熔池内部喷吹载气B‑脱磷粉剂,改善脱磷动力学条件,利用熔态渣粒脱磷体系实现炉内高效脱磷,钢液磷含量≤0.010%;深度去氮阶段,向熔池内部大流量喷吹O2或O2‑CO2混合气,强化熔池脱碳,同时利用熔池冶金反应产生的大量CO气泡有效去除钢液内[N];冶炼终点阶段,喷吹载气B‑脱磷粉剂防止钢液“回磷”,然后向熔池内部大流量喷吹Ar,均匀熔池成分和温度,最终实现冶炼终点钢液碳含量≥0.10%、磷含量≤40×10

【技术特征摘要】
1.一种全废钢电弧炉洁净化快速冶炼方法,其特征在于:利用纯气体、载气A-增碳粉剂、载气B-脱磷粉剂不同种类介质喷吹模式的在线动态切换,在不同冶炼阶段完成不同种类介质在熔池钢液面以下的轮吹过程:在增碳助熔阶段,向熔池内部喷吹载气A-增碳粉剂,提高熔池碳含量,同时加快已形成熔池的钢液流动速度,利用渗碳加速废钢熔化,废钢熔化过程结束后熔池钢液碳含量达到0.40%~2.0%;高效脱磷阶段,向熔池内部喷吹载气B-脱磷粉剂,改善脱磷动力学条件,利用熔态渣粒脱磷体系实现炉内高效脱磷,钢液磷含量≤0.010%;深度去氮阶段,向熔池内部大流量喷吹O2或O2-CO2混合气,强化熔池脱碳,同时利用熔池冶金反应产生的大量CO气泡有效去除钢液内[N];冶炼终点阶段,喷吹载气B-脱磷粉剂防止钢液“回磷”,然后向熔池内部大流量喷吹Ar,均匀熔池成分和温度,最终实现冶炼终点钢液碳含量≥0.10%、磷含量≤40×10-6、氮含量≤50×10-6。2.根据权利要求1所述的一种全废钢电弧炉洁净化快速冶炼方法,其特征步骤如下:步骤1:电弧炉出钢后至加入炉料前,控制系统关闭增碳路自动切断阀,开启脱磷路自动切断阀,利用脱磷输送管道喷吹;喷枪中心管和环缝管喷吹N2,中心管流量为50~500Nm3/h,环缝管流量为50~200Nm3/h,以防止喷枪堵塞、烧损;步骤2:电弧炉加料阶段,继续利用脱磷输送管道喷吹,喷枪中心管喷吹O2,流量为50~300Nm3/h,环缝管喷吹丙烷或天然气,流量为50~200Nm3/h,保证加料过程喷枪正常工作;步骤3:增碳助熔阶段,向废钢熔化已形成的熔池中喷吹碳粉,提高熔池碳含量,利用渗碳加速废钢熔化;执行步骤如下:1)熔化前期,控制系统开启增碳路自动切断阀,关闭脱磷路自动切断阀,利用增碳输送管道喷吹,喷枪中心管执行载气A-增碳粉剂模式,加速废钢渗碳熔化;此阶段熔池形成较浅,须控制喷粉速率以提高渗碳效率,喷粉速率为1~5kg/min,载气A流量为100~300Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h;2)熔化中期,继续利用增碳输送管道喷吹,喷枪中心管执行载气A-增碳粉剂模式,加此阶段熔池具有一定深度,控制喷粉速率以提高渗碳效率,喷粉速率为5~10kg/min,载气A流量为200~500Nm3/h;喷枪环缝管喷吹丙烷或天然气,流量为50~200Nm3/h;3)熔化后期,继续利用增碳输送管道喷吹,喷枪中心管执行载气A-增碳粉剂模式,此阶段熔池较深,强化熔池渗碳和搅拌,喷粉速率为10~20kg/min,载气A流量为200~600Nm3/h;喷枪环缝管喷吹丙烷...

【专利技术属性】
技术研发人员:朱荣魏光升董凯赵婧鑫吴学涛唐天平王雪亮武文合胡绍岩王云
申请(专利权)人:北京科技大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1