基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法技术

技术编号:16837783 阅读:32 留言:0更新日期:2017-12-19 20:09
本发明专利技术公开一种基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法,属于机械故障诊断技术领域。该方法首先采集行星齿轮箱太阳轮不同故障类型、不同转速、不同负载工况下的行星齿轮箱的振动数据,从振动数据中创建多个样本点并赋予相应的多属性标签,搭建多属性卷积神经网络,训练多属性卷积神经网络,测试时从待诊断的行星齿轮箱的振动数据中创建多个数据样本点,用训练好的多属性卷积神经网络对测试样本点进行诊断,完成对变工况行星齿轮箱太阳轮故障诊断。本发明专利技术方法能够自动提取特征,准确率高,泛化性能强,方法简单易懂,且能实现变工况下故障诊断,能同时预测转速,易于工程推广。

Fault diagnosis method of planetary gear box in variable working condition based on multi attribute convolution neural network

The invention discloses a fault diagnosis method of the sun gear of the planetary gear box under variable conditions based on the multi-attribute convolutional neural network, which belongs to the technical field of mechanical fault diagnosis. The method first collects the sun wheel planetary gear box of different fault types and different speed and different load vibration data of planetary gearbox condition, create multiple samples from the vibration data and give the corresponding attribute, build multi attribute convolutional neural network training, multi attribute convolutional neural network, to create a number of data samples from the vibration data of the planetary gear box to be diagnosed in test, diagnosis of test sample with multi attribute convolutional neural network trained, the completion of the variable conditions of sun wheel planetary gear box fault diagnosis. The method can automatically extract features, high accuracy and generalization performance, and is simple and easy to understand, and can realize fault diagnosis under variable conditions. It can predict rotational speed at the same time, and is easy to popularize in engineering.

【技术实现步骤摘要】
基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法
:本专利技术属于机械故障诊断
,具体涉及一种基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法。
技术介绍
:行星齿轮箱具有重量轻、体积小、传动比大、承载能力强、传动效率高等诸多优点,因此已被广泛应用于风力发电、航空、船舶、冶金、石化、矿山、起重运输等行业的机械传动系统。行星齿轮箱通常工作在低速重载的恶劣环境下,转速和负载均有一定波动,所以太阳轮、行星轮、内齿圈和行星架等关键部件的严重磨损和疲劳裂纹等故障时有发生,这些大型复杂机械设备一旦发生故障,所造成的直接、间接损失非常大。针对定轴齿轮箱的故障诊断研究已取得了初步的成效,但行星齿轮箱不同于固定中心轴旋转的传统齿轮箱,行星齿轮箱中的齿轮运动是典型的复合运动,其振动响应比传统的齿轮箱更为复杂,故障诊断难度相较传统齿轮箱更大,传统行星齿轮箱故障诊断方法仅仅只能诊断行星齿轮箱中某一部件单一工况下的故障类型,且识别率不高,方法复杂。太阳轮作为行星齿轮箱中重要组成部分,且是故障高发部件,所以对变工况行星齿轮箱太阳轮故障诊断具有重大的现实意义。本专利技术所述的多属性卷积神本文档来自技高网...
基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法

【技术保护点】
一种基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法,其特征在于所述诊断方法具体步骤如下:(1)数据准备阶段:采集行星齿轮箱太阳轮的不同故障类型、不同转速及不同负载工况下的行星齿轮箱的振动数据,从振动数据中创建多个样本点,所述样本点包括数据和多属性标签,所述样本点构成训练数据库,训练数据库由训练集和验证集组成;(2)创建阶段:创建多属性卷积神经网络;(3)训练阶段:利用训练数据库来训练多属性卷积神经网络,获得网络参数;(4)测试阶段:采集待诊断的行星齿轮箱的振动数据,从振动数据中创建多个数据样本点,用训练好的多属性卷积神经网络对所述数据样本点进行故障诊断。

【技术特征摘要】
1.一种基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法,其特征在于所述诊断方法具体步骤如下:(1)数据准备阶段:采集行星齿轮箱太阳轮的不同故障类型、不同转速及不同负载工况下的行星齿轮箱的振动数据,从振动数据中创建多个样本点,所述样本点包括数据和多属性标签,所述样本点构成训练数据库,训练数据库由训练集和验证集组成;(2)创建阶段:创建多属性卷积神经网络;(3)训练阶段:利用训练数据库来训练多属性卷积神经网络,获得网络参数;(4)测试阶段:采集待诊断的行星齿轮箱的振动数据,从振动数据中创建多个数据样本点,用训练好的多属性卷积神经网络对所述数据样本点进行故障诊断。2.根据权利要求1所述的故障诊断方法,其特征在于步骤(1)中所述样本点和步骤(4)中所述数据样本点中的数据创建方式为:优先采用随机方式创建,即在随机位置处截取振动数据中的大于一个数据周期长度的最小整数个连续数据点作为一个样本点数据,优先选择k*2n个数据点作为一个样本点数据,其中k=1、3、5,n是整数;行星齿轮箱太阳轮旋转一周,采样的数据点个数定义为数据周期;变工况条件下,行星齿轮箱太阳轮转速是不同的,样本点数据长度为大于太阳轮最小转速对应的数据周期的最小整数,且能表示为k*2n,其中k=1、3、5,n是整数。3.根据权利要求1所述的故障诊断方法,其特征在于所述步骤(1)中所述多属性标签创建方式为:行星齿轮箱的多属性的数目为M,则样本点多属性标签有M维,每维数值是属性种类的序号。4.根据权利要求1所述的故障诊断方法,其特征在于所述步骤(2)中所述多属性卷积神经网络的创建方式为:所述多属性卷积神经网络包含输入层、卷积层、最大池化层、平均池化层及软最大化输出层,每层卷积层后接一个激活层,激活函数采用偏移修正线性单元,具体表达式为max(-1,x),每层激活层后面接一个最大池化层;卷积层的卷积模板尺寸采用大尺寸的卷积模板,如11*1、9*1、7*1、5*1,卷积层步长为1*1;最大池化层池化窗口为2*1,步长为2*1;输入层大小为H*1*K,其中H为样本点数据长度,K为数据维度即传感器数目;软最大化输出层由M个得分向量组成;变工况行星齿轮箱的每个属性用一个得分向量表示,每个得分向量的维数等于属性种类数目;多属性卷积神经网络的风险损失是M个交叉熵函数的加权平均值;所述的多属性卷积神经网络的一个样本点i的风险损失为:式中:M是属性数目,Lik是属性k的风险损失,λk是...

【专利技术属性】
技术研发人员:单建华佘慧莉吕钦张神林王孝义
申请(专利权)人:安徽工业大学
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1