当前位置: 首页 > 专利查询>常州大学专利>正文

一种基于边界点的抗噪支持向量机的水蜜桃品质分级方法技术

技术编号:16780090 阅读:90 留言:0更新日期:2017-12-13 00:12
本发明专利技术公开了一种基于边界点的抗噪支持向量机的水蜜桃品质分级方法,其步骤如下:(1)采集不同品质等级的水蜜桃可见/近红外光谱数据,并对可见/近红外光谱数据进行预处理和PCA特征提取;(2)将不同品质等级的水蜜桃可见/近红外光谱样本集两两组合,建立多组水蜜桃可见/近红外光谱训练集;(3)使用基于边界点的抗噪支持向量机对训练集进行训练,得到多个水蜜桃品质等级分类器;(4)利用水蜜桃品质等级分类器对待分级的水蜜桃可见/近红外光谱进行检测。本发明专利技术使用基于边界点的抗噪支持向量机对水蜜桃的可见/近红外光谱进行检测,具有检测速度快、抗噪能力强、分类准确性高等优点,可实现在噪声检测环境下对水蜜桃品质等级分级。

A method for grading peach quality based on boundary point based anti noise support vector machine

The invention discloses a peach quality classification method of anti noise of support vector machine based on boundary points, the steps are as follows: (1) peach collection of different levels of quality in visible / near infrared spectral data, and extraction of visible / near infrared spectral data preprocessing and PCA features; (2) the different quality of peach the level of visible / near infrared spectra of samples set 22 combination, establish a set of peach Vis / NIR spectra of the training set; (3) using the boundary point noise of support vector machine for training the training based on multiple classifier peach quality level; (4) the use of peach peach quality level classifier classification visible / near infrared spectrum detection. The invention uses the anti noise support vector machine based on boundary points to detect the visible / near infrared spectrum of honey peach, and has the advantages of fast detection speed, strong anti noise ability and high classification accuracy, so that it can achieve the grading of honey peach quality under the noise detection environment.

【技术实现步骤摘要】
一种基于边界点的抗噪支持向量机的水蜜桃品质分级方法
本专利技术涉及水蜜桃品质等级鉴别领域,具体涉及一种基于边界点的抗噪支持向量机的水蜜桃品质等分级的方法。
技术介绍
桃原产于中国,除了具有很好的观赏性外,更具有很有的食用性,桃富含蛋白质、脂肪、糖、钙、磷、铁和多种维生素,特别是铁的含量在水果中名列前茅。特别是水蜜桃,其以果肉柔嫩、甜蜜多汁、香气浓郁而享誉海内外。同时,从国际贸易看,东南亚作为世界两个鲜桃市场之一,其良好的桃消费习惯和广阔的市场成为推进我国水蜜桃产业发展的动力。但是,我国水蜜桃生产技术水平较低,离标准化生产和规范化管理还有很大的距离,水蜜桃的品质分级操作基本通过人工方式处理。然而,由于水蜜桃含粗纤维少肉质细软、个头大、水分足且皮薄绵软,采用人工方式进行品质等级的鉴定存在以下的缺陷:1)人工方法常会在水蜜桃上留下手印子,并由于氧化的缘故,手印处会颜色变深,影响水蜜桃的品相和质量;2)人工品质分级方法主观性强,标准化程度低;3)水蜜桃成熟上市的时间较集中且不易存储,人工品质分级方法耗费时间长,不利于水蜜桃从生产环节到物流环节的流通。因此,研究一种简单、快速、且无损的水蜜桃品本文档来自技高网...
一种基于边界点的抗噪支持向量机的水蜜桃品质分级方法

【技术保护点】
一种基于边界点的抗噪支持向量机的水蜜桃品质分级方法,其特征包括如下步骤:(1)采集n个不同品质等级的水蜜桃可见/近红外光谱数据,并对可见/近红外光谱数据进行预处理和PCA特征提取,得到不同品质等级的水蜜桃可见/近红外光谱样本集;(2)将不同品质等级的水蜜桃可见/近红外光谱样本集两两组合,建立

【技术特征摘要】
1.一种基于边界点的抗噪支持向量机的水蜜桃品质分级方法,其特征包括如下步骤:(1)采集n个不同品质等级的水蜜桃可见/近红外光谱数据,并对可见/近红外光谱数据进行预处理和PCA特征提取,得到不同品质等级的水蜜桃可见/近红外光谱样本集;(2)将不同品质等级的水蜜桃可见/近红外光谱样本集两两组合,建立组水蜜桃可见/近红外光谱训练集;(3)将上述组水蜜桃可见/近红外光谱训练集输入到基于边界点的抗噪支持向量机中进行训练,得到个水蜜桃品质等级分类器;(4)使用水蜜桃品质等级分类器对待分级的水蜜桃样本进行检测;上述步骤(3)所述的水蜜桃品质等级分类器的构建步骤如下:(31)在每组水蜜桃可见/近红外光谱训练集中的两类品质等级的水蜜桃可见/近红外光谱样本集X1和X2上分别使用支持向量域描述(supportvectordatadescription,SVDD)算法得到两类样本集在特征空间下的最小球形空间闭区域的球心c1和c2,以及分布在两个最小球形空间闭区域上的样本点集合Z1和Z2,并设置X1和X2在特征空间的边界点集B1和B2的初始值分别为Z1和Z2;(32)在X1中计算每个样本xi到球心c1在特征空间中的欧氏距离di:di=||φ(xi)-φ(c1)||2,(1)其中xi满足xi∈X1且表示样本从原始空间到核空间的映射函数,在X2计算每个样本点xi到球心c2在特征空间中的欧氏距离ei:ei=||φ(xi)-φ(c2)||2;(2)其中xi满足xi∈X2且(33)根据di值降序排列X1中的样本xi,其中xi满足xi∈X1且依次将样本xi代入式(3)求解向量μ,随即将xi连同得到的μ值代入式(4)更新边界点集B1,这一过程直至遍历X1中所有满足条件的样本,其中|B1|表示B1中样本的个数,阈值ε为一正常数;根据ei值降序排列X2中的样本点xi,其中xi满足xi∈X2且依次将样本xi代入式(5)求解向量λ,随即将xi连同得到的λ值代入式(6)更新边界点集B2,这一过程直至遍历X2中所有满足条件的样本,

【专利技术属性】
技术研发人员:顾晓清倪彤光万建武薛磊
申请(专利权)人:常州大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1