当前位置: 首页 > 专利查询>燕山大学专利>正文

基于改进的最小二乘支持向量机的水下目标定位方法技术

技术编号:16284077 阅读:111 留言:0更新日期:2017-09-23 03:34
一种基于改进的最小二乘支持向量机的水下目标定位方法,其内容包括在定位区域部署n个传感器节点,根据节点间距离及节点间层次高低确定子传感网络,构建分布式水声传感网络,得到训练数据集,对LSSVR模型进行初始化;有效节点被提出用于水声传感网络以判断目标节点与其它节点通信是否被障碍物影响,如果被影响,根据水下传感器节点与目标节点通信得到的受影响数据,使用迭代收敛策略对数据进行处理,作为LSSVR模型的输入得到子传感网络的预测值;否则,直接将测量数据作为LSSVR模型的输入,得到子传感网络的预测值;根据权值函数计算得到每个子传感网络的权值;结合子传感网络的预测值和与其对应的子传感网络的权值,最终得到目标的预测位置。

Underwater target localization method based on improved least squares support vector machines

An improved least squares support vector machine underwater target positioning method based on the content included in the orientation of regional deployment of N sensor nodes are determined according to the distance between the sensor nodes and sub nodes level, constructing distributed sensor network, to get the training data set, the initialization of LSSVR model is proposed for active nodes; the underwater acoustic sensor networks to determine the target node communication with other nodes are obstacles, if be affected, according to the data affected by the underwater sensor node and the target node communication, which is used to process the data convergence strategy, forecast the sub sensor network value as the input of LSSVR model; otherwise, direct measurement the data as the input of LSSVR model, forecast the sub sensor network; according to the weights calculated for each sub function The weights of the sensing network are combined with the prediction value of the sub sensor network and the weights of the corresponding sub sensor network to obtain the predicted position of the target.

【技术实现步骤摘要】
基于改进的最小二乘支持向量机的水下目标定位方法
本专利技术涉及水声传感器智能感知
,尤其是一种基于改进的最小二乘支持向量机的水下目标定位方法。
技术介绍
水下目标定位,旨在通过水下水声传感网络的通信与计算能力,来获取水下目标的相关位置信息。水下目标定位技术可为海军防卫、海洋生命监测以及地震、台风预测等应用提供理论依据和技术支撑。相比于陆地环境,水下环境更复杂,节点间在水下进行通信会受到大的噪声干扰,同时传感器会受到来自障碍物的干扰。上述弱通信特征,使得水下目标精确定位成为一个挑战性的问题。经对现有文献检索发现,中国专利申请号为201210082153.6,名称为“一种无线传感网络节点三维定位方法”,该方法通过不共面的四个锚节点与未知节点通信,得到未知节点到锚节点的距离估计值,然后结合距离估计值计算位置节点的位置坐标,实现水下传感器网络节点精确定位。然而,该方法实现精确目标定位的前提是距离估计值足够精确,而水声弱通信特征使得距离估计往往包含着噪声。如果不对干扰噪声进行处理,那么定位精度将大大降低。另外,中国专利申请号为201510677240.X,名称为“一种基于遗传算法的室内水本文档来自技高网...
基于改进的最小二乘支持向量机的水下目标定位方法

【技术保护点】
一种基于改进的最小二乘支持向量机的水下目标定位方法,其特征在于:该方法内容包括以下步骤:步骤1,在定位区域部署n个传感器节点,每个节点与目标节点通过水声通信方式进行信息交互,并根据节点间距离确定子传感网络,以构建分布式水声传感网络;通过构建的分布式水声传感网络得到训练数据集,对最小二乘支持向量回归模型进行初始化;步骤2,在原传感网络的基础上,设计有效节点策略,以判断目标节点与其它节点通信是否被障碍物影响,如果判定被影响则进行步骤3,否则进行步骤4;步骤3,根据水下传感器节点与目标节点通信得到的受影响数据,使用迭代收敛策略对数据进行处理,处理后的数据作为最小二乘支持向量回归模型的输入得到子传感网...

【技术特征摘要】
1.一种基于改进的最小二乘支持向量机的水下目标定位方法,其特征在于:该方法内容包括以下步骤:步骤1,在定位区域部署n个传感器节点,每个节点与目标节点通过水声通信方式进行信息交互,并根据节点间距离确定子传感网络,以构建分布式水声传感网络;通过构建的分布式水声传感网络得到训练数据集,对最小二乘支持向量回归模型进行初始化;步骤2,在原传感网络的基础上,设计有效节点策略,以判断目标节点与其它节点通信是否被障碍物影响,如果判定被影响则进行步骤3,否则进行步骤4;步骤3,根据水下传感器节点与目标节点通信得到的受影响数据,使用迭代收敛策略对数据进行处理,处理后的数据作为最小二乘支持向量回归模型的输入得到子传感网络的预测值;步骤4,由步骤2知,此时目标节点与其它节点通信未受影响,直接将测量数据作为最小二乘支持向量回归模型的输入,对每个子传感网络相对于目标节点的位置进行预测,得到子传感网络的预测值;步骤5,在有效节点基础上,设计与通信距离和有效节点数目有关的权值函数,根据权值函数计算得到每个子传感网络的权值;步骤6,根据步骤3或步骤4得到的子传感网络的预测值以及步骤5得到的每个子传感网络的权值,结合子传感网络的预测值和与其对应的子传感网络的权值,最终得到目标的预测位置。2.根据权利要求1所述的基于改进的最小二乘支持向量机的水下目标定位方法,其特征在于:在步骤2中,所述判断目标节点与其它节点通信是否被障碍物影响,系采用如下规则进行判断:式中τ为判断目标是否被影响的临界值,将上述目标节点与其它节点通信得到的测量距离与原先对应的测试数据最小差值|xl-hl|min和τ作比较,如果大于临界值τ则表明目标被影响,则与其进行通信的节点被称为无效节点,否则目标正常未被影响,与其进行通信的节点被定义为有效节点。3.根据权利要求1所述的基于改进的最小二乘支持向量机的水下目标定位方法,其特征在于:在步骤3中,所述根据水下传感器节点与目标节点通信得到的受影响数据,使用迭代收敛策略对数据进行处理,处理后的数据作为最小二乘支持向量回归模型的输入得到子传感网络的预测值;其过程如下:首先采用下述迭代公式对数据进行处理,x(k+1)=δx(k)式中k为迭代步数,x为测量值,参数δ是一个N×N维矩阵对角,其元素值被设计如下:xl为测量数据x的第l个元素,为所有训练数据第l个元素的平均值,这意味着所有与目标节点通信中被影响的节点即无效节点得到的测量数据都将以迭代方式获得最终的子传感网络预测值,而有效节点得到的测量数据则直接使用原始LSSVR模型的回归函数得到预测值;子传感网络预测值由下式得到:y(k+1)(x)=y(k)(δx)式中y(·)为LSSVR模型的回归函数,其形式表达如下

【专利技术属性】
技术研发人员:李鑫滨张成淋徐加杰闫磊韩松
申请(专利权)人:燕山大学
类型:发明
国别省市:河北,13

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1