【技术实现步骤摘要】
基于反卷积神经网络的场景语义分割方法
本专利技术涉及模式识别、机器学习、计算机视觉领域,特别涉及一种基于反卷积神经网络的场景语义分割方法。
技术介绍
随着计算机运算能力的飞速提升,计算机视觉、人工智能、机器感知等领域也迅猛发展。场景语义分割作为计算机视觉中一个基本问题之一,也得到了长足的发展。场景语义分割就是利用计算机对图像进行智能分析,进而判断图像中每个像素点所属的物体类别,如地板、墙壁、人、椅子等等。传统的场景语义分割算法一般仅仅依靠RGB(红绿蓝三原色)图片来进行分割,很容易受到光线变化、物体颜色变化以及背景嘈杂的干扰,在实际运用中很不鲁棒,精度也很难到用户需求。深度传感技术的发展,像微软的Kinect,能够捕捉到高精度的深度图片,很好的弥补了传统的RGB图片的上述缺陷,为鲁棒性好、精度高的物体识别提供了可能性。在计算机视觉和机器人领域,有大量的研究探索如何有效的利用RGB和深度信息来提高场景分割的精度。这些算法基本上都是利用现在最先进的全卷积神经网络来进行场景分割,但是全卷积神经网络每个神经单元都有很大的感受野,很容易造成分割的物体边沿非常粗糙。其次在RG ...
【技术保护点】
一种基于反卷积神经网络的场景语义分割方法,其特征在于,所述方法包括下述步骤:步骤S1,对场景图片用全卷积神经网络提取密集特征表达;步骤S2,利用局部敏感的反卷积神经网络并借助所述图片的局部亲和度矩阵,对步骤S1中得到的密集特征表达进行上采样和优化,得到所述图片的分数图,从而实现精细的场景语义分割。
【技术特征摘要】
1.一种基于反卷积神经网络的场景语义分割方法,其特征在于,所述方法包括下述步骤:步骤S1,对场景图片用全卷积神经网络提取密集特征表达;步骤S2,利用局部敏感的反卷积神经网络并借助所述图片的局部亲和度矩阵,对步骤S1中得到的密集特征表达进行上采样和优化,得到所述图片的分数图,从而实现精细的场景语义分割。2.根据权利要求1所述的方法,其特征在于,所述局部亲和度矩阵通过提取所述图片的SIFT特征、SPIN特征以及梯度特征,然后利用ucm-gPb算法求得。3.根据权利要求1所述的方法,其特征在于,所述局部敏感的反卷积神经网络由三个模块多次拼接而成,该三个模块分别是局部敏感的反聚集层、反卷积层和局部敏感的均值聚集层。4.根据权利要求3所述的方法,其特征在于,所述拼接次数为2或3次。5.根据权利要求3所述的方法,其特征在于,通过以下公式得到所述局部敏感的反聚集层的输出结果:其中x代表特征图中某个像素点的特征向量,A={Ai,j}是x为中心得到的一个s×s大小的局部亲和度矩阵,表征周围领域的像素点和中间像素点是否相似,(i,j)和(o,o)分别代表亲和度矩阵中的任意位置及中心位置,...
【专利技术属性】
技术研发人员:黄凯奇,赵鑫,程衍华,
申请(专利权)人:中国科学院自动化研究所,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。