当前位置: 首页 > 专利查询>青岛大学专利>正文

多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法技术

技术编号:16023009 阅读:53 留言:0更新日期:2017-08-19 05:08
本发明专利技术属于功能复合材料制备技术领域,涉及一种多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法,先将葡萄糖、硝酸镍、硝酸钴、尿素和去离子水混合后转移到反应釜中反应得到淡紫色产物并冷却至室温,再将淡紫色产物清洗、冷冻干燥后烧结并降温冷却得到碳@钴酸镍,将碳@钴酸镍加入去离子水中加热,同时通入氮气搅拌,然后向溶液中加入氯化铁和氯化亚铁搅拌分散,分散好后加入氨水搅拌反应得到深红色磁性复合材料,用去离子水洗涤并干燥得到碳@钴酸镍@四氧化三铁吸波复合材料,所用原料简单易得,成本低,清洁无毒,来源广,反应时间短,性能优,具有广泛的应用价值。

Process for preparing carbon @ cobalt nickel @ Fe3O4 composite with multilayer core shell structure

The invention belongs to the technical field of the preparation of functional composite materials, and relates to a method for preparing carbon @ NiCo2O4 composite Fe3O4 @ a multi-layer core-shell structure, the glucose, nickel nitrate, cobalt nitrate, urea and deionized water and then transferred to the reaction kettle mauve product and cooled to room temperature the lavender products cleaning, freeze drying, sintering and cooling to obtain carbon @ NiCo2O4, carbon @ NiCo2O4 deionized water heating, through the mixture mixing, and then added to the solution of ferric chloride and ferrous chloride dispersion, good dispersion after adding ammonia mixing reaction of deep red magnetic composite materials. Washing with deionized water and dried to obtain carbon @ NiCo2O4 @ Fe3O4 absorbing composite materials, the raw materials are simple and easy, low cost, clean non-toxic, wide source, reaction time The utility model has the advantages of short performance and wide application value.

【技术实现步骤摘要】
多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法
:本专利技术属于功能复合材料制备
,涉及一种多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法,制备的复合材料用于提高材料的吸波性能,由碳、金属氧化物和磁性材料结合而成的多层核壳结构的碳@钴酸镍@四氧化三铁复合材料相比其单组分材料而言具有明显优异的吸波性能,制备的复合材料将碳的高比表面积、轻质等优点与钴酸镍、氧化铁的介电、磁损耗性能结合在一起,同时利用核壳结构及中间空心结构产生的大量界面,使得入射的电磁波通过电损耗、磁损耗、界面极化、多重反射及散射等方式被有效地吸收削弱,获得轻质、高效的结构型复合吸波材料,最终达到电磁屏蔽与战斗隐身的目的。
技术介绍
:随着无线通讯的快速发展与大功率电子设备的广泛应用,电磁干扰和辐射已经产生了严重的环境污染,对电磁设备的兼容性、信息技术的保护和人类的身体健康造成了巨大的危害。因此,吸波材料的研制引起了人们的极大兴趣,此外,在未来高技术、立体化战争中,武器装备随时面临着探测与反探测的挑战,为了提高军事装备的战术技能,隐身科技已经成为未来高技术战争的重要研究课题,而吸波材料是隐身技术中的关键环节,其开发研究已经受到了世界各军事强国的高度重视。吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量而耗散掉的一类材料。良好的吸波材料必须具备两个条件,一是雷达波射入到吸波材料内,其能量损耗尽可能大;二是吸波材料的阻抗与雷达波的阻抗相匹配,此时满足无反射。吸波材料一般要求具备厚度薄、质量轻、频带宽、反射率低和功能强的特性。碳材料由于其可调谐的性质、相对低的密度、广泛的来源、简单的制备以及低的价格成为最有吸引力的吸波材料,现阶段广泛研究的主要有碳纳米管、碳纤维、多孔碳等。虽然这些以碳为基础的材料在吸波领域有很大的贡献,但是在结构和组分上仍需创新以更好地满足实际应用。因此,寻求一种多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法,利用不同损耗机制的材料复合在一起,通过结构的调整达到优异的吸波效果。
技术实现思路
:本专利技术的目的在于克服现有技术存在的缺点,寻求设计提供提高复合材料的吸波性能,设计提供一种新颖结构的多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法,制备的复合吸波的多孔结构碳球增加材料的表面积,降低密度,磁性材料的引入增强了阻抗匹配及磁性损耗,钴酸镍的存在提高了介电损耗,核壳结构间形成大量的界面极化,使得复合材料具有宽的吸收频带和优异的微波吸收性能。为了实现上述目的,本专利技术的具体制备过程为:(1)碳@钴酸镍的制备:先用电子天平分别称取0.01~0.02g的葡萄糖、0.10~0.20g的硝酸镍、0.20~0.30g的硝酸钴和0.25~0.30g的尿素,再用量筒量取50~65ml的去离子水,将葡萄糖、硝酸镍、硝酸钴、尿素和去离子水置于100ml烧杯中混合,在室温下磁力搅拌30~60min得到混合液,然后将混合液转移到100ml反应釜中,在150~200℃条件下反应3~6h后得到淡紫色产物,并缓慢冷却至室温,然后将淡紫色产物用去离子水清洗5~8次后冷冻干燥得到碳@钴酸镍的前驱体;再将得到的碳@钴酸镍的前驱体在氮气氛围下300~500℃条件下烧结5~7h后降温,温度降到80℃后将样品取出并冷却至室温,得到碳@钴酸镍;(2)碳@钴酸镍@四氧化三铁的制备:将50~200mg步骤(1)制备的碳@钴酸镍加入到250ml三口烧瓶中,加入80~150ml去离子水,加热并保持温度为50℃,同时通入氮气以200r/min的速度搅拌20~40min,然后向溶液中分别加入0.20~0.80g的氯化铁和0.20~0.50g的氯化亚铁搅拌30~40min进行分散,分散好后逐滴加入1~3ml质量分数为28%的氨水搅拌,反应30~50min得到深红色磁性复合材料,用去离子水洗涤5~8遍后在-50℃下真空干燥12~24h,得到碳@钴酸镍@四氧化三铁吸波复合材料。本专利技术制备的碳@钴酸镍@四氧化三铁吸波复合材料具有明显的碳球、刺状钴酸镍和四氧化三铁颗粒,刺状钴酸镍的直径大约为50nm到200nm,四氧化三铁纳米粒子尺寸均匀,并且均匀的分散在刺状钴酸镍和碳球的表面。本专利技术所述碳球能用聚苯乙烯(PS)球、氧化锰纳米棒、氧化锡纳米棒、氧化钛纳米棒代替;钴酸镍能用铁、镍、钴及其合金纤维代替;四氧化三铁能用钴、镍及其合金或钴铁氧体代替。本专利技术制备的碳@钴酸镍@四氧化三铁吸波复合材料中碳球利用葡萄糖水热法制得,以购买获得;中间层为高介电损耗的钴酸镍,与碳球一步水热法同时获得;最外层为磁损耗的四氧化三铁,通过三者的协同效应及特殊的核壳结构最终达到高吸波性能的要求。本专利技术与现有技术相比,其制备工艺简单,操作方便,电磁波入射到制备的复合材料中并多次在刺状钴酸镍表面上反射被吸收,降低电磁波反射到空间的几率,同时磁性材料产生磁性损耗、介电损耗,使得更多的入射波被消耗,而且所用原料简单易得,成本低,清洁无毒,来源广,反应时间短,性能优,具有广泛的应用价值。附图说明:图1为本专利技术实施例1制备的碳@钴酸镍@四氧化三铁复合材料的扫描电子显微镜图片。图2为本专利技术实施例1制备的碳@钴酸镍@四氧化三铁复合材料的透射电子显微镜图片。图3为本专利技术实施例1制备的碳@钴酸镍@四氧化三铁复合材料的三维吸波性能图。具体实施方式:下面通过实施例并结合附图进一步说明。实施例1:本实施例选取钴酸镍、四氧化三铁与碳球结合,具体制备过程为:(1)先用电子天平称取0.0100g的葡萄糖、0.1164g的硝酸镍、0.2320g的硝酸钴和0.2882g的尿素,再用量筒量取50ml的去离子水,将其置于100ml烧杯中混合,在室温下磁力搅拌30min得到混合液,然后将混合液转移到100ml反应釜中,在180℃条件下反应4.5h,反应结束后将得到的淡紫色产物缓慢冷却至室温,然后将淡紫色产物用去离子水清洗5~8次后冷冻干燥得到碳@钴酸镍的前驱体;再将碳@钴酸镍的前驱体在氮气氛围、350℃条件下烧结5h,待温度降到80℃左右将样品取出,冷却至室温,最终得到碳@钴酸镍;(2)将0.10g步骤(1)制备的碳@钴酸镍加入到250ml的三口烧瓶中,加入80ml去离子水,加热并保持温度为50℃,同时通入氮气以200r/min的速度搅拌20min后加入0.3538g的氯化铁和0.2065g的氯化亚铁搅拌30min进行分散,分散好后逐滴加入2ml质量分数为28%的氨水搅拌,反应30min得到深红色磁性复合材料,用去离子水洗涤5~8遍后在-50℃下真空干燥12~24h,得到碳@钴酸镍@四氧化三铁吸波复合材料。本实施例对制备的碳@钴酸镍@四氧化三铁吸波复合材料采用现有技术进行性能测试,测试结果表明制备的碳@钴酸镍@四氧化三铁吸波复合材料中四氧化三铁纳米粒子尺寸均匀并均匀地分散在碳@钴酸镍表面(如图1所示);图2所示的吸波性能测试结果表明当厚度为3.4mm时复合材料在13.4GHz的吸收强度达到-43.0dB,当吸收强度达到-10dB时,90%的入射电磁波能够被吸收。当复合材料厚度为2.7mm时,吸收数值低于-10dB的测试频宽达到了2.1GHz(12.8-14.9GHz)。本本文档来自技高网
...
多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法

【技术保护点】
一种多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法,其特征在于具体制备过程为:(1)碳@钴酸镍的制备:先用电子天平分别称取0.01~0.02g的葡萄糖、0.10~0.20g的硝酸镍、0.20~0.30g的硝酸钴和0.25~0.30g的尿素,再用量筒量取50~65ml的去离子水,将葡萄糖、硝酸镍、硝酸钴、尿素和去离子水置于100ml烧杯中混合,在室温下磁力搅拌30~60min得到混合液,然后将混合液转移到100ml反应釜中,在150~200℃条件下反应3~6h后得到淡紫色产物,并缓慢冷却至室温,然后将淡紫色产物用去离子水清洗5~8次后冷冻干燥得到碳@钴酸镍的前驱体;再将得到的碳@钴酸镍的前驱体在氮气氛围下300~500℃条件下烧结5~7h后降温,温度降到80℃后将样品取出并冷却至室温,得到碳@钴酸镍;(2)碳@钴酸镍@四氧化三铁的制备:将50~200mg步骤(1)制备的碳@钴酸镍加入到250ml三口烧瓶中,加入80~150ml去离子水,加热并保持温度为50℃,同时通入氮气以200r/min的速度搅拌20~40min,然后向溶液中分别加入0.20~0.80g的氯化铁和0.20~0.50g的氯化亚铁搅拌30~40min进行分散,分散好后逐滴加入1~3ml质量分数为28%的氨水搅拌,反应30~50min得到深红色磁性复合材料,用去离子水洗涤5~8遍后在‑50℃下真空干燥12~24h,得到碳@钴酸镍@四氧化三铁吸波复合材料。...

【技术特征摘要】
1.一种多层核壳结构的碳@钴酸镍@四氧化三铁复合材料的制备方法,其特征在于具体制备过程为:(1)碳@钴酸镍的制备:先用电子天平分别称取0.01~0.02g的葡萄糖、0.10~0.20g的硝酸镍、0.20~0.30g的硝酸钴和0.25~0.30g的尿素,再用量筒量取50~65ml的去离子水,将葡萄糖、硝酸镍、硝酸钴、尿素和去离子水置于100ml烧杯中混合,在室温下磁力搅拌30~60min得到混合液,然后将混合液转移到100ml反应釜中,在150~200℃条件下反应3~6h后得到淡紫色产物,并缓慢冷却至室温,然后将淡紫色产物用去离子水清洗5~8次后冷冻干燥得到碳@钴酸镍的前驱体;再将得到的碳@钴酸镍的前驱体在氮气氛围下300~500℃条件下烧结5~7h后降温,温度降到80℃后将样品取出并冷却至室温,得到碳@钴酸镍;(2)碳@钴酸镍@四氧化三铁的制备:将50~200mg步骤(1)制备的碳@钴酸镍加入到250ml三口烧瓶中,加入80~150ml去离子水,加热并保持温度为50℃,同...

【专利技术属性】
技术研发人员:刘敬权王晓霞魏双
申请(专利权)人:青岛大学
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1