适用于原子力显微镜观测沥青试样的精控热成型制备方法技术

技术编号:15980828 阅读:137 留言:0更新日期:2017-08-12 05:08
本发明专利技术公开了适用于原子力显微镜观测沥青试样的精控热成型制备方法。是将固态沥青在烘箱中加热至熔融态;将载玻片在加热板上预热;将熔融态沥青试样滴在预热的载玻片上均匀摊开成圆形并用透明耐热塑料盖密封,待沥青试样形成光滑、均匀的表面后;将载玻片移至冷台冷却至室温,放置于原子力显微镜上进行观测。本发明专利技术不仅能精确控制制件时的温度,避免了由于控温不足引起的快速热老化,而且在试样从加热到冷却的全过程中均可控制沥青试样免受灰尘、杂质的污染;相比使用其他器皿的制备方法,本发明专利技术在保证成型质量的情况下,最大程度的方便了原子力显微镜的观测;同时实现了批量制备,极大的提高了试验效率。

【技术实现步骤摘要】
适用于原子力显微镜观测沥青试样的精控热成型制备方法
本专利技术属于沥青纳米级微观结构观测领域,涉及一种适用于原子力显微镜观测沥青试样的精控热成型制备方法。
技术介绍
沥青作为一种被广泛使用的路面胶结材料,研究沥青的微观特性将从本质上解释其宏观性能的好坏,因此是十分必要的。目前作为研究沥青微观特性的主要手段之一为观测其微观结构,而其中应用较广的的观测仪器有荧光显微镜、扫描电子显微镜和原子力显微镜。原子力显微镜作为一种具有较高分辨率的纳米级观测工具,在诸如沥青老化机理、改性沥青改性机理以及沥青粘附力等研究中得到较多应用。在观测沥青试样时采用的轻敲模式可以得到形貌与相位两种图像,供研究人员从表面形貌与表面相位差两种角度对沥青试样进行研究,且可以利用力-距离曲线分析沥青微观力学性能,如粘附力、杨氏模量、硬度等。原子力显微镜的无损成像特点使其相比其他显微技术拥有独特的优势。目前原子力显微技术已趋向成熟,针对利用原子力显微镜观测沥青试样常用的热成型法与溶解法,最大的难题在于热成型法因控温不好而导致的沥青快速热老化以及溶解法因溶剂的不完全挥发导致的对沥青本身结构的影响。简单介绍一下两种方法:溶解法,将10g常温沥青溶解于100ml指定溶剂中(三氯乙烯、甲苯或二氯甲烷等),可通过溶液浓度来控制沥青膜厚度,将配好的溶液滴到载玻片中央,之后将载玻片放置于旋涂仪上进行成型,最后将载玻片放入烘箱中挥发溶剂。该方法最大优点在于成型的沥青膜平整度较好且沥青膜厚度可以得到相对有效的控制;缺点在于溶剂是否会在溶解沥青时对沥青本身结构造成破坏,以及溶剂是否残留等一些不确定因素对观测结果的影响,并且该方法操作较为复杂,制件数量有限且溶剂多为有毒物质,对实验人员身体十分有害。传统热成型法,首先将沥青加热至液态,之后取少量沥青滴在载玻片中央,将载玻片放入定温烘箱中,使沥青自然流淌成型,最后取出载玻片冷却至室温。该方法最大优点在于操作简单且无其他材料对沥青结构造成的影响。缺点在于,由于烘箱是一个具有一定容积的容器,因此烘箱的控温效果并不良好,烘箱底部附近会高于设定温度而顶部附近则会低于设定温度,因此无法批量制件;在加热载玻片过程中并未对载玻片进行保护,会使本来平整度就较差的沥青试样沾染灰尘、杂质等,非常不利于观测。并且在沥青形成膜的过程中并未进行有效观察与调整,加热后沥青自由流淌,极易流淌出载玻片中央甚至流出载玻片,造成制件的失败。因此针对上述制件的不足之处,有必要提出新的制件方法与标准,对原子力显微镜在沥青试样观测方面的应用起到推进作用。
技术实现思路
本专利技术的目的在于克服目前沥青试样制备方法的缺陷,防止观测沥青快速热老化,保护沥青免受灰尘、杂质污染,排除其他物质对试样的影响,而公开一种适用于原子力显微镜观测沥青试样的精控热成型制备方法。本专利技术包括以下步骤:a.将一小盒固态沥青放入烘箱中加热至熔融态,当试样沥青为基质沥青时,烘箱温度设为120℃~130℃;当试样沥青为改性沥青时,烘箱温度设为150℃~160℃;b.将载玻片分为三个一组放置在加热板上进行预热,当沥青试样为基质沥青时,加热板温度设为110℃~120℃;当沥青试样为改性沥青时,加热板温度设为140℃~150℃;c.将熔融态沥青试样盛出7~10g滴在预热好的载玻片中央并均匀摊开成圆形;d.用透明耐热塑料盖将每组载玻片密封,静置7~10min,同时透过透明耐热塑料盖观察沥青试样形成光滑、均匀的表面;e.在沥青试样形成光滑、均匀的表面后,将各组载玻片移至冷台,利用耐热塑料盖进行保护,冷却至室温后再放置一段时间待其均匀退火、冷却后放置于原子力显微镜上进行观测。本专利技术提供的制备方法相比传统热成型最大优点在于精控,不仅能够精确的控制制备时的温度,最大程度的避免了由于控温不足引起的快速热老化,而且在试样从加热到冷却的全过程中均可利用耐热塑料盖控制沥青试样免受灰尘、杂质的污染;相比使用其他器皿的制备方法,本专利技术使用载玻片为沥青试样载体在保证成型质量的情况下,最大程度的方便了原子力显微镜的观测;同时实现了批量制备,极大的提高了试验效率。附图说明附图1为本专利技术基质沥青试件成型后的效果图。附图2为本专利技术基质沥青试件成型后的三维形貌图。图中数值表示沥青表面形貌的高低起伏情况,单位为nm。附图3为本专利技术基质沥青试件成型后的三维相位图。图中数值表示沥青表面相位差大小的变化情况,单位为Deg。附图4为本专利技术SBS改性沥青试件成型后的三维形貌图。图中数值表示沥青表面形貌的高低起伏情况,单位为nm。附图5为本专利技术SBS改性沥青试件成型后的三维相位图。图中数值表示沥青表面相位差大小的变化情况,单位为Deg。具体实施方式本专利技术适用于所有沥青,包括基质沥青与改性沥青。基质沥青为盘锦90#沥青,改性沥青为SBS成品改性沥青,原子力显微镜为本原公司生产的CSPM3000型,选用轻敲模式,扫描范围15μm×15μm。实施例一:a.将盘锦90#沥青样品300g放入恒温烘箱中,烘箱温度设为125℃,将沥青加热至熔融态;b.将载玻片分为三个一组放置在加热板上进行预热,加热板温度设为120℃;c.将熔融态沥青试样盛出10g滴在预热好的载玻片中央并均匀摊开成圆形;d.用透明耐热塑料将每组载玻片密封,静置10min,同时透过透明耐热塑料盖观察沥青试样形成光滑、均匀的表面;e.在沥青试样形成光滑、均匀的表面后,将各组载玻片移至冷台,利用耐热塑料盖进行保护,冷却至室温后再放置一段时间待其均匀退火、冷却后放置于原子力显微镜上进行观测。实施例二:a.将SBS改性沥青样品300g放入恒温烘箱中,烘箱温度设为160℃,将沥青加热至熔融态;b.将载玻片分为三个一组放置在加热板上进行预热,加热板温度设为140℃;c.将熔融态沥青试样盛出10g滴在预热好的载玻片中央并均匀摊开成圆形;d.用透明耐热塑料盖将每组载玻片密封,静置7min,同时透过透明耐热塑料盖观察沥青试样形成光滑、均匀的表面;e.在沥青试样形成光滑、均匀的表面后,将各组载玻片移至冷台,利用耐热塑料盖进行保护,冷却至室温后再放置一段时间使其均匀退火、冷却后放置于原子力显微镜上进行观测。本文档来自技高网
...
适用于原子力显微镜观测沥青试样的精控热成型制备方法

【技术保护点】
适用于原子力显微镜观测沥青试样的精控热成型制备方法,其特征在于包含以下步骤:a.将一小盒固态沥青放入烘箱中加热至熔融态,当试样沥青为基质沥青时,烘箱温度设为120℃~130℃;当试样沥青为改性沥青时,烘箱温度设为150℃~160℃;b.将载玻片分为三个一组放置在加热板上进行预热,当沥青试样为基质沥青时,加热板温度设为110℃~120℃;当沥青试样为改性沥青时,加热板温度设为140℃~150℃;c.将熔融态沥青试样盛出7~10g滴在预热好的载玻片中央并均匀摊开成圆形;d.用透明耐热塑料盖将每组载玻片密封,静置7~10min,同时透过透明耐热塑料盖观察沥青试样形成光滑、均匀的表面;e. 在沥青试样形成光滑、均匀的表面后,将各组载玻片移至冷台,利用耐热塑料盖进行保护,冷却至室温后再放置一段时间待其均匀退火、冷却后放置于原子力显微镜上进行观测。

【技术特征摘要】
1.适用于原子力显微镜观测沥青试样的精控热成型制备方法,其特征在于包含以下步骤:a.将一小盒固态沥青放入烘箱中加热至熔融态,当试样沥青为基质沥青时,烘箱温度设为120℃~130℃;当试样沥青为改性沥青时,烘箱温度设为150℃~160℃;b.将载玻片分为三个一组放置在加热板上进行预热,当沥青试样为基质沥青时,加热板温度设为110℃~120℃;当沥青试样为改性沥青时,加热板温度设为140℃~150℃;c.将熔融态沥青试样盛出7~10g滴在预热好的载玻片中央并均匀摊开成圆形;d.用透明耐热塑料盖将每组载玻片密封,静置7~10min,同时透过透明耐热塑料盖观察沥青试样形成光滑、均匀的表面;e.在沥青试样形成光滑、均匀的表面后,将各组载玻片移至冷台,利用耐热塑料盖进行保护,冷却至室温后再放置一段时间待其均匀退火、冷却后放置于原子力显微镜上进行观测。2.根据权利要求1所述的适用于原子力显微镜观测沥青试样的精控热成型制备方法,其特征在于:a.将盘锦90#沥青样品300g放入恒温烘箱中,烘箱温度设为125℃,将沥青加热至熔融态;b.将载玻片分为三个一组放置在加热板...

【专利技术属性】
技术研发人员:王岚任敏达王萧萧常春清
申请(专利权)人:内蒙古工业大学
类型:发明
国别省市:内蒙古,15

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1