一种二硫化钨/Super P钠离子电池自支撑负极的制备方法技术

技术编号:15879667 阅读:169 留言:0更新日期:2017-07-25 17:42
本发明专利技术公开了一种的二硫化钨/Super P钠离子电池自支撑负极的制备方法,将Super P压制成片状,得电极支撑体;然后用钨粉和过氧化氢溶液配置一定浓度的WO2溶液,再将所得溶液与异丙醇、电极支撑体放入水热釜,使用水热感应加热设备加热保温一定时间,洗涤干燥即得具有三维多孔结构的WO2/Super P复合材料,再将其与一定量的硫脲在管式气氛炉(氩气)中煅烧一段时间得到具有三维多孔结构的二硫化钨/Super P钠离子电池自支撑负极。

Preparation method of self supporting negative electrode for two tungsten sulfide /SuperP sodium ion battery

The invention discloses a two tungsten sulfide /Super P sodium ion battery anode preparation method of self support, Super P pressed into sheet electrode support; and then use the WO2 solution of tungsten powder and hydrogen peroxide solution configuration in certain concentration, and then the obtained solution with isopropyl alcohol, electrode support into the water the use of hot water heating kettle, induction heating equipment, heating time, WO2/Super P composite washing and drying to obtain three-dimensional porous structure, and the amount of Thiourea in a tube furnace (AR) for a period of time has been calcined in the three-dimensional porous structure of two tungsten sulfide /Super P sodium ion the battery anode support.

【技术实现步骤摘要】
一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法
本专利技术属于钠离子自支撑负极制备领域,具体涉及一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法。
技术介绍
锂离子电池以高能量密度、高电压、低自放电以及优异的循环性能等优势成为消费电子领域的主要储能设备。然而,地球上锂资源很少,加上锂离子电池的广泛应用,使得锂资源更加短缺,价格居高不下,不适合用于大规模储能应用。钠与锂属于同族元素,和锂具有相似的物化性质,储量丰富,价格低廉(钠的基本原材料天然碱大约比锂的原材料碳酸锂便宜30~40倍),并且其电极电位(Na+/Na)较锂离子的(Li+/Li)高0.3V,具有更加稳定的电化学性能和安全性能。而钠离子电池和锂离子电池具有相似的结构和工作原理,因此,从成本、能耗、资源等角度来说,钠离子电池在规模化储能方面具有更大的市场竞争优势。WS2的晶体结构与MoS2类似,都具有独特的二维层状结构。钨原子和硫原子之间有强的化学键连接,而层间的硫原子和硫原子之间是由弱的分子键相连接的,层与层之间的结合力仍为范德华力,与MoS2相比,WS2的层间距更大,摩擦系数更低,使得其具有一系列的优点:WS2在多数介质中都不溶解,包括水、油、碱和多数酸;WS2的热稳定性也好,在大气中的分解温度为510℃,539℃迅速氧化,真空中分解温度为1150℃;WS2的抗辐射性强于石墨、MoS2,具有良好的润滑性能,不仅适用于润滑条件,也可以用作高温、高压、高真容、高负荷、有辐射及有腐蚀性介质中,充分表面WS2可作为电池的电极材料,因此,近年来金属WS2作为超级电容器和钠离子电池电极材料受到了广泛的关注。目前现有的制备方法有真空浸渍法、气相硫化反应法、化学气相沉积法、表面活性剂辅助水热法、热分解法、沉淀还原法等,这些方法存在着工艺条件复杂难以控制、设备要求高、反应配比难以控制、材料晶体生长异常、结晶不纯、粉体易团聚等问题。
技术实现思路
本专利技术的目的在于提供一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,以克服上述现有技术存在的缺陷,本专利技术可以制备出具有三维多孔连通结构的钠离子电池自支撑负极。为达到上述目的,本专利技术采用如下技术方案:一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,包括以下步骤:1)取钨粉研磨后溶于过氧化氢溶液中反应制得悬浮液A;2)向悬浮液A中加入异丙醇,搅拌得前驱体B;3)将研磨好的SuperP压制成电极支撑体C;4)将前驱体B转入水热感应釜中,放入电极支撑体C,其中每60mL的B中加入0.1~0.3gC,将釜密封后,置于水热感应加热设备中,以400~600KHz的感应频率由室温升温到160~200℃,并保温4~6h得WO2/SuperP复合材料D;5)将WO2/SuperP复合材料D分别用去离子水和无水乙醇洗涤,然后干燥得到E;6)将E埋没于硫脲中进行烧结,即得到二硫化钨/SuperP锂离子电池自支撑负极。进一步地,步骤1)中每30mL过氧化氢溶液中加入1.5g钨粉。进一步地,步骤1)中过氧化氢溶液的质量分数为30%。进一步地,步骤1)中反应温度为25~40℃,反应时间为1h。进一步地,步骤2)中异丙醇为分析纯,每30ml悬浮液A中加入30~40ml异丙醇,使用磁力搅拌器进行搅拌,速度为500~700转/分钟,时间为30~90min。进一步地,步骤3)中压制压力为20~30MPa,电极支撑体C厚度为1mm,长为4mm,宽为2.5mm。进一步地,步骤4)中电极支撑体C垂直于水热感应加热设备中感应线圈的磁感线方向放置。进一步地,步骤5)中在室温下采用去离子水和无水乙醇对WO2/SuperP复合材料D进行洗涤,无水乙醇为分析纯,干燥温度为160~200℃,时间为8~12h。进一步地,步骤6)中E完全埋没于硫脲中,烧结条件为:氩气氛围,以10℃/min的升温速率升温到500℃后保温2h,然后自然冷却至室温。与现有技术相比,本专利技术具有以下有益的技术效果:本专利技术采用水热感应加热制备的WS2/SuperP自支撑电极的方法。其优点在于:一方面,所制备的WS2/SuperP自支撑电极上WS2具有纳米片结构,均匀的小尺寸和精细分散性,使其具有较大的比表面积,既有利于WS2的高密度填充,又使WS2纳米片不容易脱落,可以提供更多的钠存储位置并促进钠离子在WS2/SuperP自支撑电极与电解质中的嵌入/脱出反应,极大提高了电池的容量、倍率性能和循环性能;另一方面,SuperP/WS2复合的方法免去了传统电极材料涂膜的步骤,且不使用粘结剂、导电剂,不影响电池的容量,缩短了生产工序的同时节约了成本。此外,本专利技术采用水热感应加热技术改变了传统反应中热传导的方式,支撑体本身在较短的时间内最先被加热到较高的温度,这样可以使活性材料更易在支撑体表面成核生长,从而改善两相间的界面结合,提升了电极的结合牢固性,进一步提高了本专利技术所制备电极的稳定性。本专利技术利用支撑体本身被加热的特点来制备具有优异界面结合的WS2/SuperP自支撑电极,充分发挥支撑体与活性材料之间的协同作用,且利用该专利技术制备的电极,界面结合稳定,纳米化程度高,孔径分布均匀,克服了传统电极材料易团聚的缺陷,故都表现出较高的容量,优异的循环性能和倍率性能。附图说明图1为本专利技术实施例1制备的钠离子电池自支撑负极的X/射线衍射(XRD)图谱;图2是本专利技术实施例1制备的钠离子电池自支撑负极的扫描电镜(SEM)照片(放大两万倍);图3为本专利技术实施例1、3制备的钠离子电池自支撑负极的倍率性能图。具体实施方式下面对本专利技术的实施方式做进一步详细描述:一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,包括以下步骤:1)取1.5g的钨粉研磨后溶于30mL的质量分数为30%的过氧化氢溶液中,使其温度保持在25~40℃,经过1h的反应形成悬浮液A;2)向A加入分析纯的异丙醇,每30ml悬浮液A中加入30~40ml异丙醇,用磁力搅拌器以500~700转/分钟的速度搅拌30~90min形成前驱体B;3)使用粉末压片机以20~30MPa的压力将研磨好的SuperP压制成厚度为1mm,长为4mm,宽为2.5mm的电极支撑体C;4)将B入水热感应釜中,再将C垂直于水热感应加热设备中感应线圈的磁感线放入,其中每60mL的B中加入0.1~0.3gC,将釜密封后,置于水热感应加热设备中,以400~600KHz的感应频率由室温升温到160~200℃,并保温4~6h得WO2/SuperP复合材料D;5)将D分别用温度为室温的去离子水和分析纯的无水乙醇柔和洗涤,然后在160~200℃的温度中干燥8~12h得到WO2/SuperP复合材料E;6)将E完全埋没于硫脲中,放入氧化铝坩埚,在管式气氛炉(氩气)中,以10℃/min的升温速率,升温到500℃后保温2h得到具有三维多孔连通结构的二硫化钨/SuperP钠离子电池自支撑负极。下面结合实施例对本专利技术做进一步详细描述:实施例1(1)取1.5g的钨粉研磨后溶于30mL的质量分数为30%的过氧化氢溶液中,使其温度保持在35℃,经过1h的反应形成悬浮液A;(2)向A加入35mL分析纯的异丙醇,用磁力搅拌器以600转/分钟的速度搅拌60min形成前驱体B;(3)使用本文档来自技高网
...
一种<a href="http://www.xjishu.com/zhuanli/59/201710262552.html" title="一种二硫化钨/Super P钠离子电池自支撑负极的制备方法原文来自X技术">二硫化钨/Super P钠离子电池自支撑负极的制备方法</a>

【技术保护点】
一种二硫化钨/Super P钠离子电池自支撑负极的制备方法,其特征在于,包括以下步骤:1)取钨粉研磨后溶于过氧化氢溶液中反应制得悬浮液A;2)向悬浮液A中加入异丙醇,搅拌得前驱体B;3)将研磨好的Super P压制成电极支撑体C;4)将前驱体B转入水热感应釜中,放入电极支撑体C,其中每60mL的B中加入0.1~0.3g C,将釜密封后,置于水热感应加热设备中,以400~600KHz的感应频率由室温升温到160~200℃,并保温4~6h得WO2/Super P复合材料D;5)将WO2/Super P复合材料D分别用去离子水和无水乙醇洗涤,然后干燥得到E;6)将E埋没于硫脲中进行烧结,即得到二硫化钨/Super P锂离子电池自支撑负极。

【技术特征摘要】
1.一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,其特征在于,包括以下步骤:1)取钨粉研磨后溶于过氧化氢溶液中反应制得悬浮液A;2)向悬浮液A中加入异丙醇,搅拌得前驱体B;3)将研磨好的SuperP压制成电极支撑体C;4)将前驱体B转入水热感应釜中,放入电极支撑体C,其中每60mL的B中加入0.1~0.3gC,将釜密封后,置于水热感应加热设备中,以400~600KHz的感应频率由室温升温到160~200℃,并保温4~6h得WO2/SuperP复合材料D;5)将WO2/SuperP复合材料D分别用去离子水和无水乙醇洗涤,然后干燥得到E;6)将E埋没于硫脲中进行烧结,即得到二硫化钨/SuperP锂离子电池自支撑负极。2.根据权利要求1所述的一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,其特征在于,步骤1)中每30mL过氧化氢溶液中加入1.5g钨粉。3.根据权利要求1所述的一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,其特征在于,步骤1)中过氧化氢溶液的质量分数为30%。4.根据权利要求1所述的一种二硫化钨/SuperP钠离子电池自支撑负极的制备方法,其特征在于,步骤1)中反应温度为25~40℃,反应时间为1h...

【专利技术属性】
技术研发人员:黄剑锋李瑞梓焦冰玉李嘉胤何元元党欢李春光陈文卓
申请(专利权)人:陕西科技大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1