一种水下目标结构化稀疏特征提取方法技术

技术编号:15637110 阅读:253 留言:0更新日期:2017-06-15 01:29
本发明专利技术涉及一种基于贝叶斯结构化稀疏的水下目标辐射噪声特征提取方法,本方法首先将水下目标辐射噪声信号进行分帧,采用层次贝叶斯模型对帧信号基于离散傅里叶字典的分解问题进行概率建模。对相邻多帧信号,采用贝叶斯变分算法对模型进行推断,估计出信号的分解系数,最后将能量归一化后的分解系数作为帧信号的多帧联合块结构化稀疏特征。该特征是一种对噪声具有鲁棒性的目标特征。

【技术实现步骤摘要】
一种水下目标结构化稀疏特征提取方法
本专利技术属于水下目标识别领域,用于从目标辐射的噪声信号中提取特征,并应用于目标的分类或识别。
技术介绍
水下目标识别是现代声纳系统和水声对抗系统的重要功能,目前主要由声纳员人工完成。而声纳员的培训工作需要大量的时间成本和资金成本,且声纳员的实际表现易受到生理、心理以及环境因素的影响。随着现代声纳系统和水声对抗系统的自动化和智能化,不依赖人工的自动水下目标识别技术成为了水下目标识别领域内的重要研究内容,具有重大的现实及长期战略意义。目标特征提取是自动水下目标识别技术的核心内容之一。目前已经提出和实现了时域波形特征提取、基于谱分析的特征提取和基于人耳听觉特征的特征提取等特征提取方法。这些目标特征在一定的条件下具有良好的识别性能,但同时也受到噪声干扰等各种实际应用条件的限制。发展新的水下目标特征提取方法一直以来都是该领域的重要研究课题。水下目标信号中往往包含数量有限的强能量窄带线谱成分,而且这些线谱成分是区分舰船类别的重要标志。本方法借助层次贝叶斯模型,根据水下目标辐射噪声信号的特点,通过选取合适的先验概率,利用贝叶斯结构化稀疏算法,提取水下目标的多帧联合块稀疏特征。
技术实现思路
要解决的技术问题为了避免现有技术的不足之处,本专利技术提出一种水下目标结构化稀疏特征提取方法。技术方案一种水下目标结构化稀疏特征提取方法,其特征在于步骤如下:步骤1:对水下目标辐射噪声信号y进行分帧、去直流和能量归一化预处理;步骤2:将各帧信号基于离散傅立叶字典D分解展开:y(n)=Dx(n)式中,x(n)是时域帧信号y(n)基于字典D的分解系数;其中,字典D的各个列向量为字典原子,它们是具有单位长度的傅立叶正交基;字典的行数与各帧样本的长度保持一致,列数根据信号时频谱中线谱成分出现的频率范围以及数量确定;字典中每一列傅立叶基函数应从包含线谱成分的频段中进行选取;步骤3:采用层次贝叶斯模型对帧信号基于离散傅立叶字典的分解过程进行建模,构建的层次贝叶斯模型中假设信号y基于字典D的分解系数x服从多元高斯分布,均值和协方差分别用随机变量μ,∑表示,对于相邻的M帧信号,噪声ni=yi-Φxi,i=1,2,…,M也服从高斯分布,均值都为0,精确度即方差倒数均为α0,其中α0和α={α1,α2,…,αN}均服从Gamma分布,即α0~Gamma(a,b),α~Gamma(c,d),a,b,c,d均为模型的超参量,字典步骤4:对构建的层次贝叶斯模型,运用贝叶斯变分算法对隐随机变量进行推断,用均值μ作为分解系数x的估计;相邻的M帧信号联合求解得到M组信号稀疏分解系数;设最大迭代次数Nmaxiter,所采用的贝叶斯变分算法推断过程如下:步骤5:从相邻M帧信号y1,y2,…,yM的M组分解系数x1,x2,…,xM中,选择最中间的一组分解系数:若M为偶数,取xM/2;若M为奇数,取x(M+1)/2;并作能量归一化处理,作为该组连续M帧信号的多帧联合块结构化稀疏特征。一种衡量多帧联合块结构化稀疏特征的分类性能方法,其特征在于:步骤1:从样本集中随机选择一部分作为训练样本,剩下的作为测试样本;对用于训练的样本进行目标特征提取,与相应类标信息一起送入分类器中,用交叉验证训练出一个最佳分类器模型;步骤2:对测试样本进行特征提取,送入分类器模型计算识别正确率;步骤3:重复步骤1~2若干次,计算平均正确识别率,用于衡量该特征的分类性能高低。所述步骤1中的选择一部分样本为1/3。有益效果本专利技术提出的一种水下目标结构化稀疏特征提取方法,从图2~图7中可以发现,在添加了白噪声的低信噪比失匹配条件下,多帧联合块结构化稀疏特征依然恢复出水下目标信号时频谱中的强能量窄带线谱成分,是一种对噪声具有鲁棒性的目标特征。附图说明图1特征提取以及特征用于目标识别分类过程的完整示意图图2~图3信噪比为5dB时,时频图和相应的多帧联合块结构化稀疏特征对比图图4~图5信噪比为-5dB时,时频图和相应的多帧联合块结构化稀疏特征对比图图6~图7信噪比为-10dB时,时频图和相应的多帧联合块结构化稀疏特征对比图具体实施方式考虑到水下目标辐射噪声信号中往往存在稀疏的强能量线谱成分,同时这些线谱成分在时频谱上的分布具有一定的时间连续性,本方法将分帧后的水下目标辐射声信号基于离散傅立叶字典展开分解,其分解系数中大系数元素具有稀疏性,并且对于一段连续时间内的相邻若干帧信号,其分解系数中的大系数元素位置应相同或者相近。同时,水下目标信号的时频域内中存在时间相关性信息,而水下声环境中的噪声信号在时间上往往不具有相关性。因此,水下目标辐射噪声中的时间相关性信息是目标识别和分类的有用信息。为了利用这些信号中的结构先验信息,本特征提取方法利用层次贝叶斯模型,引入合适的先验分布和超参数的共享方式,能够有效利用分解系数中大系数呈块状分布的特点,在低信噪比条件下仍能较好地恢复目标辐射噪声中的强能量窄带线谱成分。与此同时,通过相邻帧信号间的超参数共享机制,帧间的相关性可以通过超参数的更新学习过程,反映到信号均值隐随机变量的推断结果中。这一推断过程可借助贝叶斯变分算法来完成。所提取的多帧联合块结构化稀疏特征能够有效利用具有可区分性的强能量窄带线谱成分以及时间相关性信息,是一种有效且对噪声具有鲁棒性的目标特征。该特征提取方法的具体技术方案如下:步骤1:对采集到的连续时间信号进行预处理。预处理包括信号分帧、信号减均值去除直流成分和能量归一化。分帧时,若采样频率为fs,帧信号时长为t秒,则帧信号包含l=t*fs个数据点。同时相邻帧信号之间有1/3个帧长的部分重叠,能够保留帧信号间的部分时间相关性信息。各帧信号具有类别信息,它们组成具有类别信息的样本集,用于之后的进一步处理。步骤2:各帧信号样本基于离散傅立叶字典D展开式为:y(n)=Dx(n)(1)式中,x(n)是时域信号y(n)基于字典D的分解系数。式中,字典D的各个列向量为字典原子,它们是具有单位长度的傅立叶正交基。字典的行数与各帧样本的长度保持一致,列数根据信号时频谱中线谱成分出现的频率范围以及数量确定。字典中每一列傅立叶基函数应从包含线谱成分的频段中进行选取。步骤3:采用层次贝叶斯模型对信号基于离散傅立叶字典D的分解问题进行建模。该贝叶斯概率模型采用块稀疏贝叶斯学习框架。模型假设N维帧信号y基于字典D的L维分解系数x服从多元高斯分布。x的各个元素xi的先验分布是均值为0,精确度(方差倒数)为αi的高斯分布。x的后验分布仍然是高斯分布,均值和协方差分别为μ,Σ。对于相邻的M帧信号,噪声ni=yi-Φxi,i=1,2,…,M亦服从高斯分布,均值都为0,精确度(方差倒数)均为α0,其中α0和α={α1,α2,…,αN}均服从Gamma分布,即α0~Gamma(a,b),α~Gamma(c,d),a,b,c,d均为模型的超参量。观测向量Y={y1,y2,…,yM},字典步骤4:对构建的层次贝叶斯模型,运用贝叶斯变分算法对隐随机变量进行推断,用均值μ作为分解系数x的估计。相邻的M帧信号联合求解得到M组信号稀疏分解系数。设最大迭代次数Nmaxiter,所采用的贝叶斯变分算法推断过程如下:具体迭代步骤:将M帧信号按列拼接得到Y=[y1;y2;…;本文档来自技高网...
一种水下目标结构化稀疏特征提取方法

【技术保护点】
一种水下目标结构化稀疏特征提取方法,其特征在于步骤如下:步骤1:对水下目标辐射噪声信号y进行分帧、去直流和能量归一化预处理;步骤2:将各帧信号基于离散傅立叶字典D分解展开:y(n)=Dx(n)式中,x(n)是时域帧信号y(n)基于字典D的分解系数;

【技术特征摘要】
1.一种水下目标结构化稀疏特征提取方法,其特征在于步骤如下:步骤1:对水下目标辐射噪声信号y进行分帧、去直流和能量归一化预处理;步骤2:将各帧信号基于离散傅立叶字典D分解展开:y(n)=Dx(n)式中,x(n)是时域帧信号y(n)基于字典D的分解系数;其中,字典D的各个列向量为字典原子,它们是具有单位长度的傅立叶正交基;字典的行数与各帧样本的长度保持一致,列数根据信号时频谱中线谱成分出现的频率范围以及数量确定;字典中每一列傅立叶基函数应从包含线谱成分的频段中进行选取;步骤3:采用层次贝叶斯模型对帧信号基于离散傅立叶字典的分解过程进行建模,构建的层次贝叶斯模型中假设信号y基于字典D的分解系数x服从多元高斯分布,均值和协方差分别用随机变量μ,∑表示,对于相邻的M帧信号,噪声ni=yi-Φxi,i=1,2,…,M也服从高斯分布,均值都为0,精确度即方差倒数均为α0,其中α0和α={α1,α2,…,αN}均服从Gamma分布,即α0~Gamma(a,b),α~Gamma(c,d),a,b,c,d均为模型的超参量,字典步骤4:对构建的层次贝叶斯模型,运用贝叶斯变分算法对隐随机变量进行推断,用均值μ作为分解系数x的估计;相邻的M帧信号联合求解...

【专利技术属性】
技术研发人员:王璐曾向阳其他发明人请求不公开姓名
申请(专利权)人:西北工业大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1