当前位置: 首页 > 专利查询>三峡大学专利>正文

一种QPQ技术基盐氰酸根含量快速测定方法技术

技术编号:15543047 阅读:193 留言:0更新日期:2017-06-05 12:09
本发明专利技术提供一种QPQ技术基盐氰酸根含量快速测定方法,准确称取被测样,转加蒸馏水定容,摇匀后用配成母液;移取2.0mL母液至碘量瓶中,加入稀硫酸溶液,100℃的恒温振荡器反应5分钟后;转移至250mL容量瓶中,加蒸馏水至接近刻度线处,调pH至7~8;取13.0mL中间液于比色瓶中,加入1.0mL的水杨酸试剂Ⅰ,摇匀后静置1mim,再加入1.0mL的水杨酸试剂Ⅱ,搅拌3min后再静置1min,配制成预处理被测样品溶液;取预处理被测样品溶液于比色皿中,采用光谱仪测量其在697nm处的吸光度,扣除空白即可完成QPQ技术基盐氰酸根含量快速测定。本发明专利技术可以在14min内完成QPQ技术基盐氰酸根含量的测定。

A rapid method for determination of salt and iodate content based on QPQ Technology

The present invention provides a method for rapid determination of QPQ base salt cyanide anion content, accurately weighed, measured, to add distilled water volume, shake with mother liquor; remove the mother liquor to 2.0mL iodine flask, adding dilute sulfuric acid solution, the reaction constant temperature oscillator 100 DEG C for 5 minutes; transfer to 250mL the volumetric flask, add distilled water to close to the scale line, adjusting pH to 7~8; 13.0mL intermediate liquid in colorimetric reagent bottle, add 1.0mL of salicylic acid, after shaking the static 1mim, then add 1.0mL of salicylic acid reagent, stirring after 3min static 1min, prepared by pretreatment of sample solution; the pretreatment of sample solution to be tested in the cuvette, measure the absorbance at 697nm by spectrometer, the blank can be completed fast determination of QPQ base salt cyanide anion content. The invention can complete the determination of the salt content of the QPQ technology base in 14min.

【技术实现步骤摘要】
一种QPQ技术基盐氰酸根含量快速测定方法
本专利技术涉及冶金行业QPQ
,是一种QPQ技术基盐氰酸根含量快速测定方法。
技术介绍
QPQ(Quench—Polish—Quench)是指金属在两种不同性质的高温熔融盐浴中作复合处理的表面强化改性技术,这里的复合可以简单理解成两个加热过程和一个抛光过程的盐浴复合处理技术,因此,虽然其原意“淬火—抛光—淬火”中的“淬火”已不是我们已知的常规淬火概念,从专业技术上来讲也不够确切,但在国际上已经习惯地沿用至今,因此仍被广泛采用。同时,考虑到“QPQ”一词在国内已经普遍被熟悉和接受,业界将“QPQ盐浴复合处理技术”简称为“QPQ技术”。金属在两种不同性质的高温熔融盐浴中作复合处理,可以使多种元素同时渗入金属表面,形成由氮化物和氧化物扩散形成的化合物层,以使金属表面得到强化改性,同时又可以大幅度提高金属表面的耐磨性、抗蚀性,这种金属表面强化改性技术实现了渗氮工序和氧化工序(碳氮共渗)的复合,氮化物和氧化物的复合,耐磨性和抗蚀性复合,热处理技术和防腐技术的复合。该技术目前在国内得到大量的推广应用,尤其在汽车、摩托车、轴类产品、电子零件、纺机、机床、电器开关、工模具上使用效果非常突出。其具有增强工件的耐磨性、耐腐蚀性和耐疲劳性、工艺过程成本低、低碳环保的技术优势。QPQ技术质量控制涉及到氮化温度、氮化时间、基盐(氮化盐、碳化盐)氰酸根含量等因素,其中基盐氰酸根含量对QPQ技术质量控制影响较大,通常应控制在32%-38%的范围内,当氰酸根的含量由质量分数为32%增加到38%,在同样的氮化温度和氮化时间的条件下(如钛合金熔炉中570℃、2.5h氮化的条件下,以45钢样品为试验对象),随着氮化盐浴中氰酸根含量的升高,化合物层深度直线增加,这是因为氰酸根浓度的升高,使得原子态氮的浓度升高(氰酸根在高温下分解产生氮原子),加快了化合物层的形成速度。实验发现,当盐浴中基盐氰酸根含量低于质量分数的32%时,元素渗入速度会大幅度下降,同样条件下,化合物层的深度会大大减小;当盐浴中氰酸盐含量高于质量分数的38%时,则盐浴的氧化性增强,形成的化合物层会带来严重的疏松。因此,一般氰酸根含量的质量分数应控制在32%-38%的正常范围内,如高于40%,则可以升高盐温,使氰酸根自动分解降低其含量到适当范围,若低于32%,则须按比例添加调整盐升高氰酸根的含量到适当范围。由此可见,基盐氰酸根的含量直接影响到工件表面化合物层的质量,其检测与调整是QPQ技术质量控制的一个重要环节。然而,目前分析仪器市场却没有能够检测QPQ技术基盐氰酸根含量的半自动或全自动分析仪器,究其原因,主要是因为目前行业内测定基盐氰酸根含量所普遍采用的甲醛定氮法操作复杂,需要反复滴定,而且要靠人眼观测颜色变化来确定滴定终点,容易引入人为误差,因而重复性差,人为误差大,难以据此开发全自动或半自动检测仪器,也很难为QPQ技术的质量控制提供精确的技术支持与分析参考。因而,研究一种满足全自动或半自动检测仪器开发要求的氰酸根含量测定方法具有重要的科学意义和市场需求。
技术实现思路
鉴于以上分析,本专利技术提出一种样品化学处理简单、检测分析快速的氰酸根含量测定方法,以满足QPQ技术基盐氰酸根含量全自动或半自动检测仪器的开发要求。所述QPQ基盐氰酸根含量快速测定方法是:在酸性条件下将基盐中的氰酸根转化为铵根,依据国家标准检测法(HJ536-2009水质氨氮的测定水杨酸分光光度法)快速检测铵根离子,以间接测定基盐氰酸根离子含量。所述QPQ基盐氰酸根含量快速测定方法包括以下步骤:S1:准确适量被测盐样(预处理盐样质量m),转移至1000mL容量瓶中并加蒸馏水定容,摇匀后用配成母液;S2:移取2.0mL母液至125mL碘量瓶中,加入2.0mL体积浓度为10%的稀硫酸,再将碘量瓶放入温度为100℃的恒温振荡器中,在通风条件下反应5分钟;S3:待S2步骤完成后,将碘量瓶内溶液转移至250mL容量瓶中,加蒸馏水至近刻度线处(预留5mL左右空间),再加入1.75mL浓度为5N的氢氧化钠溶液,将PH调至7~8后加蒸馏水定容,摇匀后配成中间液;S4:取13.0mL中间液于比色瓶中,加入1.0mL的水杨酸试剂Ⅰ,摇匀后静置1mim,再加入1.0mL的水杨酸试剂Ⅱ,搅拌3min后再静置1min(使显色反应达到终点)配制成预处理被测样品溶液。S5:取一定体积的预处理被测样品溶液于比色皿中,采用光谱仪测量其在697nm处的吸光度,扣除空白后将所测吸光度代入标准曲线中即可计算氨态氮浓度再通过换算公式可计算出被测基盐样品中氰酸根的含量。所述水杨酸试剂Ⅰ、水杨酸试剂Ⅱ依据国家标准检测法(HJ536-2009水质氨氮的测定水杨酸分光光度法)配制。所述空白:取13.0mL蒸馏水于比色瓶中,加入1.0mL的水杨酸试剂Ⅰ,摇匀后静置1mim,再加入1.0mL的水杨酸试剂Ⅱ,搅拌3min后再静置1min即可配成空白溶液。所述标准曲线:使用优级纯的氯化铵,按照实验室标准溶液配制方法配成浓度(以氮计)分别为0.05mg/L、0.1mg/L、0.2mg/L、0.3mg/L、0.4mg/L的氨氮标准溶液,用移液器依次从上述五组溶液中取13.0mL溶液于5个烘干的比色瓶中,再分别加入1.0mL的水杨酸试剂Ⅰ,摇匀后静置1mim,再加入1.0mL的水杨酸试剂Ⅱ,搅拌3min后再静置1min,最后使用光谱仪依次测量各个浓度溶液在697nm处的吸光度,扣除空白后即可建立标准曲线。所述换算公式:式中CNO-%为基盐中氰酸根含量,m为预处理盐样质量(单位g),为氨态氮浓度。本专利技术具有以下优点和有益效果:首先,检测快速,可以在14min内完成QPQ技术基盐氰酸根含量的快速测定。其次,重复性好、准确度高,甲醛定氮法操作复杂,需要反复滴定,且要靠人眼观测颜色变化来确定滴定终点,容易引入人为误差,而本方法避免了这一点,因而在具有更好的重复性的同时又能保证结果的准确度。最后,样品预处理和检测过程所需试剂少(仅需稀硫酸、氢氧化钠和水杨酸试剂),操作简单易行,与甲醛定氮法相比,更适合据此开发全自动或半自动氰酸根含量检测仪器。附图说明图1是QPQ技术基盐氰酸根含量测定流程图。图2是氨氮检测光谱图。图3是氰酸根检测标准曲线(以氨氮计间接测量)。具体实施方式结合附图及实施案例对本专利技术作进一步说明如下。如图1所示,为本
技术实现思路
所述测定QPQ技术基盐氰酸根含量的5个步骤,S1为盐样的称量定容,S2为酸解转化,S3为pH调节再定容,S4为显色反应,S5为样品检测。如图2、图3所示,为所述本专利技术具体实施方法依据:由于氰酸根离子难以直接检测,故在酸性条件下将氰酸根转换成容易检测的氨氮,然后依据水杨酸显色光谱分析法(检测波长697nm)检测被测样品反应体系的吸光度(图2所示),将吸光度扣除空白后代入氨氮标准曲线(图3所示)计算氨氮的浓度,再根据换算公式(1)反推出氰酸根的含量。本专利技术具体实施案例及分析如下:实施例1本实施例采用优级纯的氰酸钾,按照本专利技术方法,测量其中氰酸根含量,从而验证本方法的理论可行性。步骤如下:准确称取0.2629g氰酸钾(优级纯),转移至1000mL的容量瓶中,加蒸馏水定容,分别移取2.0mL上述溶液至A、B本文档来自技高网
...
一种QPQ技术基盐氰酸根含量快速测定方法

【技术保护点】
一种QPQ技术基盐氰酸根含量快速测定方法,其特征在于,包括如下步骤:S1:准确称取适量被测含盐氰酸根样,转移至1000mL容量瓶中并加蒸馏水定容,摇匀后用配成母液;S2:移取2.0mL母液至125mL碘量瓶中,加入2.0mL体积浓度为10%的稀硫酸溶液,再将碘量瓶放入温度为100℃的恒温振荡器中,在通风条件下反应5分钟;S3:待S2步骤完成后,将碘量瓶内溶液转移至250mL容量瓶中,加蒸馏水至接近刻度线处,再加入1.75mL浓度为5N的氢氧化钠溶液,将pH调至7~8后加蒸馏水定容,摇匀后配成中间液;S4:取13.0mL中间液于比色瓶中,加入1.0mL的水杨酸试剂Ⅰ,摇匀后静置1mim,再加入1.0mL的水杨酸试剂Ⅱ,搅拌3min后再静置1min,配制成预处理被测样品溶液;S5:取预处理被测样品溶液于比色皿中,采用光谱仪测量其在697nm处的吸光度,扣除空白后将所测吸光度代入标准曲线中即可计算氨态氮浓度

【技术特征摘要】
1.一种QPQ技术基盐氰酸根含量快速测定方法,其特征在于,包括如下步骤:S1:准确称取适量被测含盐氰酸根样,转移至1000mL容量瓶中并加蒸馏水定容,摇匀后用配成母液;S2:移取2.0mL母液至125mL碘量瓶中,加入2.0mL体积浓度为10%的稀硫酸溶液,再将碘量瓶放入温度为100℃的恒温振荡器中,在通风条件下反应5分钟;S3:待S2步骤完成后,将碘量瓶内溶液转移至250mL容量瓶中,加蒸馏水至接近刻度线处,再加入1.75mL浓度为5N的氢氧化钠溶液,将pH调至7~8后加蒸馏水定容,摇匀后配成中间液;S4:取13.0mL中间液于比色瓶中,加入1.0mL的水杨酸试剂Ⅰ,摇匀后静置1mim,再加入1.0mL的水杨酸试剂Ⅱ,搅拌3min后再静置1min,配制成预处理被测样品溶液;S5:取预处理被测样品溶液于比色皿中,采用光谱仪测量其在697nm处的吸光度,扣除空白后将所测吸光度代入标准曲线中即可计算氨态氮浓度再通过换算公式可计算出被测基盐样品中氰酸根的含量,即可完成QPQ技术基盐氰酸根含量快速测定;所述换算公式:式中CNO-%为基盐中氰酸根含量,m为预处理盐样质量(单位g),为氨态氮...

【专利技术属性】
技术研发人员:魏康林周丰戴贤明胡滨
申请(专利权)人:三峡大学
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1