一种提高地球敏感器体地心矢量精度的方法技术

技术编号:15537984 阅读:54 留言:0更新日期:2017-06-05 06:23
本发明专利技术公开了一种提高地球敏感器体地心矢量精度的方法,包括步骤有:步骤(1)定义B坐标系,使B坐标系方向与地球敏感器体坐标系方向相同,B坐标系的坐标原点与地心惯性系相同;步骤(2)将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的B坐标系下;步骤(3)将B坐标系的惯性导航位置增量与所述天文导航的位置增量做差,计算得到地心矢量偏差估计值;步骤(4)补偿地心矢量偏差估计值,得到补偿后的天文导航的位置矢量。本发明专利技术利用惯性导航信息,通过地球敏感器体地心矢量偏差的在线估计与补偿,降低了对地球敏感器体测量精度和地球模型的要求,提高了地球敏感器体的位置精度。

【技术实现步骤摘要】
一种提高地球敏感器体地心矢量精度的方法
本专利技术涉及航天领域,尤其涉及一种提高地球敏感器体地心矢量精度的方法。
技术介绍
航天器自主导航是指航天器在不依赖地面支持,或不与外界发生通讯的条件下,通过其自身所携带的测量设备确定运载器的姿态、位置和速度。自主导航有利于运载器飞行期间降低对外界干扰的影响,提高运行的可靠性。利用星敏感器和地球敏感器体可以实现航天器无动力条件下的自主导航,也可以在航天器有动力飞行时修正惯性导航的误差,提高导航精度。目前,星敏感器的精度得到了大幅度提高,已经能满足航天器定姿精度的需求。随着可见光地球敏感器体、紫外地球敏感器体的发展,地球视半径的测量精度也得到了提高,地心矢量的精度已成为制约地球敏感器体定位精度提高的主要因素,也影响了相应自主导航系统定位精度的提高。
技术实现思路
针对上述现有技术存在的缺陷,本专利技术提出一种提高地球敏感器体地心矢量精度的方法,可有效提高地球敏感器体的位置精度。本专利技术提供的一种提高地球敏感器体地心矢量精度的方法,其改进之处在于,所述方法包括如下步骤:(1)定义B坐标系,使所述B坐标系方向与地球敏感器体坐标系方向相同,B坐标系的坐标原点与地心惯性系相同;(2)将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的所述B坐标系下;(3)将所述B坐标系的惯性导航位置增量与所述天文导航的位置增量做差,计算得到地心矢量偏差估计值;(4)补偿地心矢量偏差估计值,得到补偿后的天文导航的位置矢量。优选的,步骤(2)所述将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的所述B坐标系下的方法包括:t2时刻B坐标系下的天文导航的位置矢量为:t1时刻的B坐标系到t2时刻的B坐标系的转化矩阵为:式中,φz,φy,φx分别为沿t1时刻的B坐标系X,Y,Z轴的旋转角;将t1时刻B坐标系下的天文导航的位置矢量转换到t2时刻B坐标系下的天文导航的位置矢量得到:式中,R1表示t1时刻地心到飞行器之间的距离,ΔR1为对应的测量误差;将t1时刻的惯性导航测量的地心惯性系下的位置矢量[Xi1,Yi1,Zi1]转化到t2时刻的B坐标系得到位置矢量[X'1,Y'1,Z'1]:式中,为地心惯性系到t1时刻的B系的坐标转化矩阵,[Xb1,Yb1,Zb1]T为t1时刻的B系下的惯性导位置矢量;将t2时刻的惯性导航测量的地心惯性系下的位置矢量[Xi2,Yi2,Zi2]转化到t2时刻的B坐标系得到位置矢量[X2,Y2,Z2]:式中,为地心惯性系到t2时刻的B系的坐标转化矩阵,[Xb2,Yb2,Zb2]T为t2时刻的B系下的惯性导位置矢量。较优选的,步骤(3)将所述B坐标系的惯性导航位置增量与所述天文导航的位置增量做差,计算得到地心矢量偏差估计值的公式包括:航天器从t1时刻飞行到t2时刻,B坐标系中Y轴方向的天文导航的位置增量为:航天器从t1时刻飞行到t2时刻,B坐标系中Y轴方向的惯性导航的位置增量为:Y′1-Y2;航天器从t1时刻飞行到t2时刻,t2时刻的B坐标系Y轴方向的天文导航的位置增量和惯性导航的位置增量的差为:根据惯性导航的特性,简化为:根据简化等式求出地心矢量偏差y0的估计值航天器从t1时刻飞行到t2时刻,t2时刻的B坐标系中Z轴方向的天文导航的位置增量为:航天器从t1时刻飞行到t2时刻,t2时刻的B坐标系中Z轴方向的惯性导航的位置增量为:(Z'1-Z2)航天器从t1时刻飞行到t2时刻,t2时刻的B坐标系Z轴方向的天文导航的位置增量和惯性导航的位置增量的差为:根据惯性导航的特性,简化为:根据简化等式求出地心矢量偏差x0的估计值较优选的,步骤(4)所述补偿地心矢量偏差估计值,得到补偿后的天文导航的位置矢量,计算公式如下:补偿后的t1时刻、t2时刻的天文导航的位置矢量为:式中,分别为t1时刻、t2时刻的B系到地心惯性系到的坐标转化矩阵。本专利技术的技术方案中,利用惯性导航信息,通过地球敏感器体地心矢量偏差的在线估计与补偿,可以降低对地球敏感器体测量精度和地球模型的要求,提高地球敏感器体的定位精度。附图说明图1为本专利技术实施例的提高地球敏感器体地心矢量精度的方法流程图;图2为本专利技术实施例的地球敏感器体坐标系O-XdYdZd和图像坐标系O-XccdYccd的定义。其中,OXdYdZd地球敏感器体结构坐标系,原点O为其安装面中心,OXd轴沿弹体纵轴指向前,OYd轴在安装面且与OXd垂直,OZd轴由右手法则确定。O'-XccdYccdZccd为成像坐标系,原点O'为成像焦平面中心处,O'Zccd与光轴方向一致,O'Yccd在成像平面内沿列像素方向向上与O'Zccd垂直,O'Xccd与O'Zccd垂直并构成右手坐标系。具体实施方式为使本专利技术的目的、技术方案及优点更加清楚明白,以下参照附图并举出优选实施例,对本专利技术进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本专利技术的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本专利技术的这些方面。本实施例提供的一种提高地球敏感器体地心矢量精度的方法,其流程图如图1所示,具体包括如下步骤:(1)定义B坐标系;为便于估计地心偏差,本实施例定义了一种B坐标系,该坐标系方向与地球敏感器体坐标系方向相同,坐标系原点与J2000地心惯性系原点相同。(2)将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的B坐标系下,其中:1)地球敏感器体坐标系OXdYdZd下地心矢量:地球敏感器体坐标系OXdYdZd和图像坐标系O'XccdYccdZccd如图2所示,设地心在地球敏感器体像平面中的理想的投影位置为(xi,yi),地心在地球敏感器体像平面中的投影位置系统偏差记为(x0,y0),当地球敏感器体的光轴指向Zd轴时,根据地球敏感器体的成像原理,地球敏感器体坐标系OXdYdZd下的地心矢量为:式中,f为焦距,xi,yi,f单位可以像素,也可以为度,本实施例选其单位为度。2)J2000地心惯性下的地心矢量:地球敏感器体坐标系下的地心矢量经坐标转换后得到J2000地心惯性系(以下提到的地心惯性系均指J2000地心惯性系)下的矢量为:式中,为地球敏感器体坐标系到地心惯性系的坐标转换矩阵。3)J2000地心惯性下的天文导航的位置矢量为:式中,为地心惯性系到B系的坐标转化矩阵,Ri表示地心到飞行器之间的距离,ΔRi为其测量误差。4)B坐标系下的天文导航的位置矢量;t2时刻B坐标系下的天文导航的位置矢量为:t1时刻的B坐标系偏离t2时刻的B坐标系通常为小角度,t1时刻的B坐标系到t2时刻的B坐标系的转化矩阵为:式中,φz,φy,φx分别为沿t1时刻的B坐标系X,Y,Z轴的旋转角。将t1时刻B坐标系下的天文导航的位置矢量转换到t2时刻B坐标系下的天文导航的位置矢量得到:式中,R1表示t1时刻地心到飞行器之间的距离,ΔR1为对应的测量误差。将t1时刻的惯性导航测量的地心惯性系下的位置矢量[Xi1,Yi1,Zi1]转化到t2时刻的B坐标系得到位置矢量[X'1,Y'1,Z'1]:式中,为地心惯性系到t1时刻的B系的坐标转化矩阵,[Xb1,Yb1,Zb1]T为t1时刻的B系下的惯性导位置矢量。将t2时刻的惯性导航测量的地心惯性系下的位置矢量[Xi2,Yi2,本文档来自技高网...
一种提高地球敏感器体地心矢量精度的方法

【技术保护点】
一种提高地球敏感器体地心矢量精度的方法,其特征在于,所述方法包括如下步骤:(1)定义B坐标系,使所述B坐标系方向与地球敏感器体坐标系方向相同,B坐标系的坐标原点与地心惯性系相同;(2)将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的所述B坐标系下;(3)将所述B坐标系的惯性导航位置增量与所述天文导航的位置增量做差,计算得到地心矢量偏差估计值;(4)补偿地心矢量偏差估计值,得到补偿后的天文导航的位置矢量。

【技术特征摘要】
1.一种提高地球敏感器体地心矢量精度的方法,其特征在于,所述方法包括如下步骤:(1)定义B坐标系,使所述B坐标系方向与地球敏感器体坐标系方向相同,B坐标系的坐标原点与地心惯性系相同;(2)将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的所述B坐标系下;(3)将所述B坐标系的惯性导航位置增量与所述天文导航的位置增量做差,计算得到地心矢量偏差估计值;(4)补偿地心矢量偏差估计值,得到补偿后的天文导航的位置矢量。2.如权利要求1所述的方法,其特征在于,步骤(2)所述将天文导航的位置矢量和惯性导航的位置矢量均转化到某一时刻的所述B坐标系下的方法包括:t2时刻B坐标系下的天文导航的位置矢量为:t1时刻的B坐标系到t2时刻的B坐标系的转化矩阵为:式中,φz,φy,φx分别为沿t1时刻的B坐标系X,Y,Z轴的旋转角;将t1时刻B坐标系下的天文导航的位置矢量转换到t2时刻B坐标系下的天文导航的位置矢量得到:式中,R1表示t1时刻地心到飞行器之间的距离,ΔR1为对应的测量误差;将t1时刻的惯性导航测量的地心惯性系下的位置矢量[Xi1,Yi1,Zi1]转化到t2时刻的B坐标系得到位置矢量[X'1,Y'1,Z'1]:式中,为地心惯性系到t1时刻的B系的坐标转化矩阵,[Xb1,Yb1,Zb1]T为t1时刻的B系下的惯性导位置矢量;将t2时刻的惯性导航测量的地心惯性系下的位置矢量[Xi2,Yi2,Zi2]转化到t2时刻的B坐标系得到位置矢量[X2,Y2,Z2]:式中,为地心惯性系到t2时刻的B系的坐标转化矩阵,[Xb2,Yb2,Zb2]T为t2时刻的B系下的惯性导位置矢量。3.如权利要求1所述的方法,其特征在于,步骤(3)将所述B坐标系的惯性导航位置增量与所述天文导航的位置增量做差,计算得到地心矢量偏差估计值的公式包括:航天器从t1时刻飞行到t2时刻,B坐标系中Y轴方向的天文导航的位置增量为:航天器从t1时刻飞行到t2时刻,B坐标系中Y轴方向的惯性导航的位置增量为:Y1′-Y2;航天器从t1时刻飞行到t2时刻,t2时刻的B坐标系Y轴方向的天文导航的位置增量和惯性导航的位置增量的差为:

【专利技术属性】
技术研发人员:踪华翟雯婧杜华军姬晓琴
申请(专利权)人:北京航天自动控制研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1