自供电便携式生态系统技术方案

技术编号:15080762 阅读:102 留言:0更新日期:2017-04-07 12:44
本发明专利技术揭示了一种自供电便携式生态系统,包括甲醇发电单元、第二发电单元、储电单元、充电单元、甲醇制备设备、主控单元、拉杆箱。所述甲醇发电单元、第二发电单元分别连接用电设备,直接为用电设备供电;甲醇发电单元、第二发电单元分别连接充电单元,通过充电单元为储电单元充电。甲醇发电单元利用甲醇发电,同时生成二氧化碳,将生成的二氧化碳输送至甲醇制备设备。所述甲醇制备设备包括氢气输送装置、第二输送装置、合成反应器。本发明专利技术提出的自供电便携式生态系统,可利用自然能源发电,并能将多余电能以甲醇的方式存储,在供电高峰可以通过甲醇发电。本发明专利技术更有利于充分地利用能源,节能环保。

【技术实现步骤摘要】

本专利技术属于自然能发电
,涉及一种发电系统,尤其涉及一种自供电便携式生态系统
技术介绍
能源危机和生态危机一直困扰着世界各国政府,同样也困扰着中国政府。多年来的探索虽有所成效,但一直没有重大突破。应用能态科学与工程的思维和视角,通过对现存农业食品生产经济模式的分析,结合自然能源的特征,发现自然能源和食品生产具有非常相似的特征。可以得出结论:自然能源的生产基地在农村,完全可以在农村建立食品和自然能源联产的新农村经济模式,称之为能态农业经济或农村能态经济。从技术层面看,几项主流自然能源发电技术已经成熟:10kw太阳能聚热斯特林发电机已实现商业化;风力发电机也已实现商业化;生物质制沼气已普及多年。所存在的问题是,这些可大量获取的自然能源的储存一直困扰着人类。为了有效利用农村中大量存在的秸秆和畜禽排泄物,一些地区的农村开始利用秸秆和畜禽排泄物制造沼气。沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种可燃气体。由于这种气体最先是在沼泽中发现的,所以称为沼气。人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,即被种类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。沼气是有机物经微生物厌氧消化而产生的可燃性气体。沼气是多种气体的混合物,一般含甲烷50~70%,其余为二氧化碳和少量的氮、氢和硫化氢等。其特性与天然气相似。空气中如含有8.6~20.8%(按体积计)的沼气时,就会形成爆炸性的混合气体。沼气除直接燃烧用于炊事、烘干农副产品、供暖、照明和气焊等外,还可作内燃机的燃料以及生产甲醇、福尔马林、四氯化碳等化工原料。经沼气装置发酵后排出的料液和沉渣,含有较丰富的营养物质,可用作肥料和饲料。沼气是一些有机物质,在一定的温度、湿度、酸度条件下,隔绝空气(如用沼气池),经微生物作用(发酵)而产生的可燃性气体。它含有少量硫化氢,所以略带臭味。发酵是复杂的生物化学变化,有许多微生物参与。反应大致分两个阶段:(1)微生物把复杂的有机物质中的糖类、脂肪、蛋白质降解成简单的物质,如低级脂肪酸、醇、醛、二氧化碳、氨、氢气和硫化氢等。(2)由甲烷菌种的作用,使一些简单的物质变成甲烷。要正常地产生沼气,必须为微生物创造良好的条件,使它能生存、繁殖。沼气池必须符合多种条件。首先,沼气池要密闭。有机物质发酵成沼气,是多种厌氧菌活动的结果,因此要造成一个厌氧菌活动的缺氧环境。在建造沼气池时要注意隔绝空气,不透气、不渗水。其次,沼气池里要维持20~40℃,因为通常在这种温度下产气率最高。第三,沼气池要有充足的养分。微生物要生存、繁殖,必须从发酵物质中吸取养分。在沼气池的发酵原料中,人畜粪便能提供氮元素,农作物的秸秆等纤维素能提供碳元素。第四,发酵原料要含适量水,一般要求沼气池的发酵原料中含水80%左右,过多或过少都对产气不利。第五,沼气池的pH值一般控制在7~8.5。人们对沼气的利用主要是通过使其燃烧的方式获得能量,能源的利用率较低。同时,利用沼气发电的技术也确有存在,但现有的发电系统是通过沼气燃烧的方式进行热能发电,能量转化效率较低,因此未能广泛应用。此外,如今人们对风能、太阳能等自然能源的利用还有局限,通常是直接供电或者存储在电池中,若还有剩余电能则无法存储,这在无形中也是对资源的一种浪费。有鉴于此,如今迫切需要设计一种新的供电方式,以便克服现有供电方式的上述缺陷。
技术实现思路
本专利技术所要解决的技术问题是:提供一种自供电便携式生态系统,可利用自然能源发电,并以甲醇的方式存储。为解决上述技术问题,本专利技术采用如下技术方案:一种自供电便携式生态系统,所述自供电便携式生态系统包括:风能发电单元、太阳能发电单元、甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备、主控单元、拉杆箱;所述甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备、主控单元设置于拉杆箱内,风能发电单元、太阳能发电单元设置于拉杆箱;所述主控单元分别连接风能发电单元、太阳能发电单元、甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备,控制各个单元的工作;所述风能发电单元、太阳能发电单元、甲醇发电单元分别连接用电设备,直接为用电设备供电;所述风能发电单元、太阳能发电单元、甲醇发电单元分别连接充电单元,通过充电单元为充电电池充电;所述主控单元还用以获取用电设备的开启状态,从而获取实时用电需求数据;同时,主控单元获取风能发电单元、太阳能发电单元、甲醇发电单元的实时发电量数据;所述主控单元根据实时用电需求数据、实时发电量数据做相应控制;当发电量数据大于用电需求数据时,控制充电单元将多余电能为充电电池充电;当发电量数据小于用电需求数据时,通过启动充电电池为用电设备供电;所述沼气制醇单元用以将生物质通过发酵制得甲醇,将制得的甲醇存储至甲醇存储单元;所述甲醇发电单元利用甲醇发电,同时生成二氧化碳,将生成的二氧化碳输送至甲醇制备设备;所述电制氢单元用以将水电解,得到氢气及氧气,将氢气输送至甲醇制备设备;电制氢单元在发电量剩余数据达到设定值时启动,利用余量电能制氢;所述甲醇制备设备用以利用氢气、二氧化碳制得甲醇;所述甲醇制备设备在发电量剩余数据达到设定高值时启动,制得甲醇;所述甲醇发电单元包括甲醇制氢系统、氢气发电系统,甲醇制氢系统与氢气发电系统连接;所述甲醇制氢系统包括制氢子系统、气压调节子系统、收集利用子系统,制氢子系统、气压调节子系统、氢气发电系统、收集利用子系统依次连接;所述制氢子系统利用甲醇水制备氢气,所述制氢子系统包括固态氢气储存容器、储存容器、原料输送装置、快速启动装置、制氢设备、膜分离装置;所述储存容器包括:容器、设置于容器内的间隔机构、与间隔机构连接的驱动机构、控制模块、感应模块;所述间隔机构将容器至少分为两个空间;两个空间中,一个放置反应液体,另一侧设置氢气发电系统释放、而后被压缩的液态或固态的二氧化碳;控制模块分别连接驱动机构、感应模块;所述驱动机构包括电机,感应模块包括压力传感器或/和液位传感器;所述感应模块用以感应容器内反应液体的量,同时感应氢气发电系统释放、而后被压缩的液态或固态的二氧化碳的量;并将感应数据发送至控制模块;所述控制模块根据感应模块感应的数据控制驱动机构对间隔机构的动作;在储存容器内的液体减少或二氧化碳增加达到设定条件时,驱动机构驱动间隔机构动作,减少反应液体的容积,增加二氧化碳的容积;所述储存容器还包括液化装置或/和固化装置,将收集到的二氧化碳液化或/和固化;所述制氢设备包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的里面;所述固态氢气储存容器、储存容器分别与制氢设备连接;储存容器中储存有液态的甲醇和水;所述快速启动装置为制氢设备提供启动能源;所述快速启动装置包括第一启动装置、第二启动装置;所述第一启动装置包括第一加热机构、第一气化管路,第一气化管路的内径为1~2mm,第一气化管路紧密地缠绕于第一加热机构上;所述第一气化管路的一端连接储存容器,通过原料输送装置将甲醇送入第一气化管路中;第一气化管路的另一端输出被气化的甲醇,而后通过点火机构点火燃烧;或者,第一气化管路的另一端输出本文档来自技高网
...
自供电便携式生态系统

【技术保护点】
一种自供电便携式生态系统,其特征在于,所述自供电便携式生态系统包括:风能发电单元、太阳能发电单元、甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备、主控单元、拉杆箱;所述甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备、主控单元设置于拉杆箱内,风能发电单元、太阳能发电单元设置于拉杆箱;所述主控单元分别连接风能发电单元、太阳能发电单元、甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备,控制各个单元的工作;所述风能发电单元、太阳能发电单元、甲醇发电单元分别连接用电设备,直接为用电设备供电;所述风能发电单元、太阳能发电单元、甲醇发电单元分别连接充电单元,通过充电单元为充电电池充电;所述主控单元还用以获取用电设备的开启状态,从而获取实时用电需求数据;同时,主控单元获取风能发电单元、太阳能发电单元、甲醇发电单元的实时发电量数据;所述主控单元根据实时用电需求数据、实时发电量数据做相应控制;当发电量数据大于用电需求数据时,控制充电单元将多余电能为充电电池充电;当发电量数据小于用电需求数据时,通过启动充电电池为用电设备供电;所述沼气制醇单元用以将生物质通过发酵制得甲醇,将制得的甲醇存储至甲醇存储单元;所述甲醇发电单元利用甲醇发电,同时生成二氧化碳,将生成的二氧化碳输送至甲醇制备设备;所述电制氢单元用以将水电解,得到氢气及氧气,将氢气输送至甲醇制备设备;电制氢单元在发电量剩余数据达到设定值时启动,利用余量电能制氢;所述甲醇制备设备用以利用氢气、二氧化碳制得甲醇;所述甲醇制备设备在发电量剩余数据达到设定高值时启动,制得甲醇;所述甲醇发电单元包括甲醇制氢系统、氢气发电系统,甲醇制氢系统与氢气发电系统连接;所述甲醇制氢系统包括制氢子系统、气压调节子系统、收集利用子系统,制氢子系统、气压调节子系统、氢气发电系统、收集利用子系统依次连接;所述制氢子系统利用甲醇水制备氢气,所述制氢子系统包括固态氢气储存容器、储存容器、原料输送装置、快速启动装置、制氢设备、膜分离装置;所述储存容器包括:容器、设置于容器内的间隔机构、与间隔机构连接的驱动机构、控制模块、感应模块;所述间隔机构将容器至少分为两个空间;两个空间中,一个放置反应液体,另一侧设置氢气发电系统释放、而后被压缩的液态或固态的二氧化碳;控制模块分别连接驱动机构、感应模块;所述驱动机构包括电机,感应模块包括压力传感器或/和液位传感器;所述感应模块用以感应容器内反应液体的量,同时感应氢气发电系统释放、而后被压缩的液态或固态的二氧化碳的量;并将感应数据发送至控制模块;所述控制模块根据感应模块感应的数据控制驱动机构对间隔机构的动作;在储存容器内的液体减少或二氧化碳增加达到设定条件时,驱动机构驱动间隔机构动作,减少反应液体的容积,增加二氧化碳的容积;所述储存容器还包括液化装置或/和固化装置,将收集到的二氧化碳液化或/和固化;所述制氢设备包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的里面;所述固态氢气储存容器、储存容器分别与制氢设备连接;储存容器中储存有液态的甲醇和水;所述快速启动装置为制氢设备提供启动能源;所述快速启动装置包括第一启动装置、第二启动装置;所述第一启动装置包括第一加热机构、第一气化管路,第一气化管路的内径为1~2mm,第一气化管路紧密地缠绕于第一加热机构上;所述第一气化管路的一端连接储存容器,通过原料输送装置将甲醇送入第一气化管路中;第一气化管路的另一端输出被气化的甲醇,而后通过点火机构点火燃烧;或者,第一气化管路的另一端输出被气化的甲醇,且输出的甲醇温度达到自燃点,甲醇从第一气化管路输出后直接自燃;所述第二启动装置包括第二气化管路,第二气化管路的主体设置于所述重整室内,第一气化管路或/和第二气化管路输出的甲醇为重整室加热的同时加热第二气化管路,将第二气化管路中的甲醇气化;所述重整室内壁设有加热管路,加热管路内放有催化剂;所述快速启动装置通过加热所述加热管路为重整室加热;所述制氢系统启动后,制氢系统通过制氢设备制得的氢气提供运行所需的能源;所述快速启动装置的初始启动能源为若干太阳能启动模块,太阳能启动模块包括依次连接的太阳能电池板、太阳能电能转换电路、太阳能电池;太阳能启动模块为第一加热机构提供电能;或者,所述快速启动装置的初始启动能源为手动发电机,手动发电机将发出的电能存储于电池中;所述催化剂包括Pt的氧化物、Pd的氧化物、Cu的氧化物、Fe的氧化物、Zn的氧化物、稀土金属氧化物、过渡金属氧化物;其中,贵金属Pt含量占催化剂总质量的0.6%~1.8%,Pd含量占催化剂总质量的1.1%~4%,Cu的氧化物占催化剂总质量的6%~12%,Fe的氧化物占催化剂总质量的3%~8%,Zn的氧化物占催化剂总质量的8%...

【技术特征摘要】
1.一种自供电便携式生态系统,其特征在于,所述自供电便携式生态系统包括:风能发电单元、太阳能发电单元、甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备、主控单元、拉杆箱;所述甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备、主控单元设置于拉杆箱内,风能发电单元、太阳能发电单元设置于拉杆箱;所述主控单元分别连接风能发电单元、太阳能发电单元、甲醇发电单元、充电电池、充电单元、沼气制醇单元、电制氢单元、甲醇制备设备,控制各个单元的工作;所述风能发电单元、太阳能发电单元、甲醇发电单元分别连接用电设备,直接为用电设备供电;所述风能发电单元、太阳能发电单元、甲醇发电单元分别连接充电单元,通过充电单元为充电电池充电;所述主控单元还用以获取用电设备的开启状态,从而获取实时用电需求数据;同时,主控单元获取风能发电单元、太阳能发电单元、甲醇发电单元的实时发电量数据;所述主控单元根据实时用电需求数据、实时发电量数据做相应控制;当发电量数据大于用电需求数据时,控制充电单元将多余电能为充电电池充电;当发电量数据小于用电需求数据时,通过启动充电电池为用电设备供电;所述沼气制醇单元用以将生物质通过发酵制得甲醇,将制得的甲醇存储至甲醇存储单元;所述甲醇发电单元利用甲醇发电,同时生成二氧化碳,将生成的二氧化碳输送至甲醇制备设备;所述电制氢单元用以将水电解,得到氢气及氧气,将氢气输送至甲醇制备设备;电制氢单元在发电量剩余数据达到设定值时启动,利用余量电能制氢;所述甲醇制备设备用以利用氢气、二氧化碳制得甲醇;所述甲醇制备设备在发电量剩余数据达到设定高值时启动,制得甲醇;所述甲醇发电单元包括甲醇制氢系统、氢气发电系统,甲醇制氢系统与氢气发电系统连接;所述甲醇制氢系统包括制氢子系统、气压调节子系统、收集利用子系统,制氢子系统、气压调节子系统、氢气发电系统、收集利用子系统依次连接;所述制氢子系统利用甲醇水制备氢气,所述制氢子系统包括固态氢气储存容器、储存容器、原料输送装置、快速启动装置、制氢设备、膜分离装置;所述储存容器包括:容器、设置于容器内的间隔机构、与间隔机构连接的驱动机构、控制模块、感应模块;所述间隔机构将容器至少分为两个空间;两个空间中,一个放置反应液体,另一侧设置氢气发电系统释放、而后被压缩的液态或固态的二氧化碳;控制模块分别连接驱动机构、感应模块;所述驱动机构包括电机,感应模块包括压力传感器或/和液位传感器;所述感应模块用以感应容器内反应液体的量,同时感应氢气发电系统释放、而后被压缩的液态或固态的二氧化碳的量;并将感应数据发送至控制模块;所述控制模块根据感应模块感应的数据控制驱动机构对间隔机构的动作;在储存容器内的液体减少或二氧化碳增加达到设定条件时,驱动机构驱动间隔机构动作,减少反应液体的容积,增加二氧化碳的容积;所述储存容器还包括液化装置或/和固化装置,将收集到的二氧化碳液化或/和固化;所述制氢设备包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的里面;所述固态氢气储存容器、储存容器分别与制氢设备连接;储存容器中储存有液态的甲醇和水;所述快速启动装置为制氢设备提供启动能源;所述快速启动装置包括第一启动装置、第二启动装置;所述第一启动装置包括第一加热机构、第一气化管路,第一气化管路的内径为1~2mm,第一气化管路紧密地缠绕于第一加热机构上;所述第一气化管路的一端连接储存容器,通过原料输送装置将甲醇送入第一气化管路中;第一气化管路的另一端输出被气化的甲醇,而后通过点火机构点火燃烧;或者,第一气化管路的另一端输出被气化的甲醇,且输出的甲醇温度达到自燃点,甲醇从第一气化管路输出后直接自燃;所述第二启动装置包括第二气化管路,第二气化管路的主体设置于所述重整室内,第一气化管路或/和第二气化管路输出的甲醇为重整室加热的同时加热第二气化管路,将第二气化管路中的甲醇气化;所述重整室内壁设有加热管路,加热管路内放有催化剂;所述快速启动装置通过加热所述加热管路为重整室加热;所述制氢系统启动后,制氢系统通过制氢设备制得的氢气提供运行所需的能源;所述快速启动装置的初始启动能源为若干太阳能启动模块,太阳能启动模块包括依次连接的太阳能电池板、太阳能电能转换电路、太阳能电池;太阳能启动模块为第一加热机构提供电能;或者,所述快速启动装置的初始启动能源为手动发电机,手动发电机将发出的电能存储于电池中;所述催化剂包括Pt的氧化物、Pd的氧化物、Cu的氧化物、Fe的氧化物、Zn的氧化物、稀土金属氧化物、过渡金属氧化物;其中,贵金属Pt含量占催化剂总质量的0.6%~1.8%,Pd含量占催化剂总质量的1.1%~4%,Cu的氧化物占催化剂总质量的6%~12%,Fe的氧化物占催化剂总质量的3%~8%,Zn的氧化物占催化剂总质量的8%~20%,稀土金属氧化物占催化剂总质量的6%~40%,其余为过渡金属氧化物;或者,所述催化剂为铜基催化剂,包括物质及其质量份数为:3-17份的CuO,3-18份的ZnO,0.5-3份的ZrO,55-80份的Al2O3,1-3份的CeO2,1-3份的La2O3;所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢设备提供启动热能,作为制氢设备的启动能源;所述储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气;所述原料输送装置提供动力,将储存容器中的原料输送至制氢设备;所述原料输送装置向原料提供0.15~5MPa的压强,使得制氢设备制得的氢气具有足够的压强;所述制氢设备启动制氢后,制氢设备制得的部分氢气或/和余气通过燃烧维持制氢设备运行;所述制氢设备制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7MPa;所述膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%;所述制氢子系统将制得的氢气通过传输管路实时传输至氢气发电系统;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述氢气发电系统利用制氢子系统制得的氢气发电;所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀、出气管路;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器将从气体压力传感器接收的该气压数据与设定阈值区间进行比对;当接收到的压力数据高于设定阈值区间的最大值,微处理器控制阀门控制器打开出气阀设定时间,使得传输管路中气压处于设定范围,同时出气管路的一端连接出气阀,另一端连接所述制氢子系统,通过燃烧为制氢子系统的需加热设备进行加热;当接收到的压力数据低于设定阈值区间的最小值,微处理器控制所述制氢子系统加快原料的输送速度;所述收集利用子系统连接氢气发电系统的排气通道出口,从排出的气体中分别收集氢气、氧气、水,利用收集到的氢气、氧气供制氢子系统或/和氢气发电系统使用,收集到的水作为制氢子系统的原料,从而循环使用;所述收集利用子系统包括氢氧分离器、氢水分离器、氢气止回阀、氧水分离器、氧气止回阀,将氢气与氧气分离,而后分别将氢气与水分离、氧气与水分离;所述氢气发电系统包括燃料电池,燃料电池包括若干子燃料电池模块,各个子燃料电池模块包括至少一个超级电容;所述制氢设备还包括电能估算模块、氢气制备检测模块、电能存储模块;所述电能估算模块用以估算氢气发电装置实时发出的电能是否能满足重整、分离时需要消耗的电能;如果满足,则关闭快速启动装置;氢气制备检测模块用来检测制氢设备实时制备的氢气是否稳定;若制氢设备制备的氢气不稳定,则控制快速启动装置再次启动,并将得到的电能部分存储于电能存储模块,当电能不足以提供制氢设备的消耗时使用;所述氢气发电装置为燃料电池系统,燃料电池系统包括:气体供给装置、电堆;所述气体供给装置利用压缩的气体作为动力,自动输送至电堆中;所述燃料电池系统还包括空气进气管路、出气管路;所述压缩的气体主要为氧气;空气与氧气在混合容器混合后进入电堆;所述燃料电池系统还包括气体调节系统;所述气体调节系统包括阀门调节控制装置,以及氧气含量传感器或/和压缩气体压缩比传感器;所述氧气含量传感器用以感应混合容器中混合的空气与氧气中氧气的含量,并将感应到的数据发送至阀门调节控制装置;所述压缩气体压缩比传感器用以感应压缩氧气的压缩比,并将感应到的数据发送至阀门调节控制装置;所述阀门调节控制装置根据氧气含量传感器或/和压缩气体压缩比传感器的感应结果调节氧气输送阀门、空气输送阀门,控制压缩氧气、空气的输送比例;压缩氧气进入混合容器后产生的动力将混合气体推送至电堆反应;所述燃料电池系统还包括湿化系统,湿化系统包括湿度交换容器、湿度交换管路,湿度交换管路为空气进气管路的一部分;经过燃料电池反应的气体通过出气管路输送至湿度交换容器;所述湿度交换管路的材料只透水不透气,使得反应后气体与自然空气进行湿度交换,而气体之间无法流通;所述甲醇制备设备包括:氮气输送装置、氢气输送装置、二氧化碳输送装置、第一混合器、第二混合器、微型固定床反应器、背压阀、醇水分离器、色谱仪、甲醇液化装置、甲醇收集容器、主控模块;所述二氧化碳输送装置连接所述储存容器收集二氧化碳的一侧;制备得到的甲醇输送至储存容器的甲醇水混合液一侧;所述氮气输送装置包括氮气存储容器、第一输送管路,第一输送管路设有第一截止阀、第一质量流量计;所述二氧化碳输送装置包括二氧化碳存储容器、第二输送管路,第二输送管路设有第二截止阀、第二质量流量计;所述氢气输送装置包括氢气存储容器、第三输送管路、第四输送管路,第三输送管路设有第三截止阀、第三质量流量计,第四输送管路设有第四截止阀、第四质量流量计;所述氢气存储容器通过第三输送管路与第...

【专利技术属性】
技术研发人员:向华
申请(专利权)人:上海合既得动氢机器有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1