积分视场光纤光谱仪光纤排布检测系统技术方案

技术编号:15011628 阅读:255 留言:0更新日期:2017-04-04 16:34
本实用新型专利技术公开了一种积分视场光纤光谱仪光纤排布检测系统,包括均匀光源发生器、分束器,消像差透镜组、探测器与计算机系统。计算机系统利用光学成像法检测光纤排布精度或者胶合微透镜阵列后光纤阵列与微透镜阵列光轴的同轴精度,根据成像系统放大率以及探测器像元尺寸,计算排布精度,其检测精度可达好于0.1微米量级,完全满足IFU光纤阵列排布精度的要求。

【技术实现步骤摘要】

本技术属于天文观测
,涉及一种积分视场光纤光谱仪光纤排布检测系统
技术介绍
积分视场光纤光谱仪(IFU)主要应用于天文上对面元的光谱观测,比如太阳和星系,由于光纤排布精度要求较高,目前国内还没有相关研究所及厂家可以按照科学要求精确排布光纤并应用到IFU中。国内第一台IFU的光纤排布由英国度伦大学设计并加工,主要应用于太阳偏振光谱观测,该仪器的全称为太阳光纤阵列太阳望远镜原理样机FASOT(FiberArraySOlarTelescope);国内第二台IFU用于星系观测,光纤排布由美国麦克唐纳天文台设计并加工,该仪器的全称为中国丽江积分视场光纤光谱仪CHiLI(CHinaLijiangIFU)。目前国内只有这两台IFU仪器应用于天文科学观测,由于光纤排布精度对于观测精度影响较大,国外进口的仪器必须进行性能测试,有精确的检测方法才能有精确的光纤排布结果,但是现在尚无检测IFU光纤排布精度的报道。
技术实现思路
本技术的目的是提供一种积分视场光纤光谱仪光纤排布检测系统,解决了测量光纤排布精度及检测问题。本技术所采用的技术方案是,积分视场光纤光谱仪光纤排布检测系统,包括:均匀光源发生器,用于均匀照亮IFU微透镜端或IFU狭缝端的光纤阵列、微透镜阵列;分束器,用于透射均匀光源发生器的光,以及将被照亮的光纤阵列或微透镜阵列的光反射至成像系统;消像差透镜组,用于把光纤阵列或微透镜阵列成像到探测器上;探测器,用于接收光纤阵列或微透镜阵列的像;计算机系统,用于计算探测器接收到的光纤阵列或微透镜阵列的像的质心位置,比较每根光纤质心位置坐标,确定光纤阵列排布精度;或比较每个微透镜质心位置坐标,确定微透镜排布精度。本技术的特征还在于,进一步的,所述消像差透镜组包括准直透镜组与成像透镜组,被所述分束器反射的光依次通过准直透镜组、成像透镜组。进一步的,所述分束器的反射率与透射率值之和为100%,反射率和透射率之比为1:1。进一步的,所述IFU微透镜端为光纤阵列胶合微透镜阵列进行光纤耦合。进一步的,所述探测器的靶面大小为B,IFU微透镜端尺寸为A,则准直透镜组和成像透镜组的放大率M=B/A,若已知准直透镜组的焦距为f1,则成像透镜组的焦距f2=f1*M。本技术的有益效果是利用该系统检测了FASOT原理样机光纤排布精度,精度在0.1微米量级,满足目前IFU光纤排布精度要求。附图说明为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是本技术检测系统检测IFU微透镜端的结构示意图。图2是IFU微透镜端和IFU狭缝端的结构示意图。图3是本技术检测系统检测IFU狭缝端的结构示意图。图4a是微透镜阵列在探测器上的成像;图4b是光纤阵列在探测器上的成像。图5为狭缝端光纤排布实际应用成像图。图6为FASOT一期5*5光纤阵列图。图中,1.IFU微透镜端,2.分束器,3.均匀光源发生器,4.准直透镜组,5.成像透镜组,6.探测器,7.IFU狭缝端,8.光纤束。具体实施方式下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。IFU的光纤阵列一端(IFU微透镜端1)排布成长方形或者正方形放在望远镜焦面处用于接收太阳或者星系的光,此端一般会按照光纤排布胶合微透镜进行光纤耦合,另一端(IFU狭缝端7)排成一列或多列作为光谱仪的狭缝,如图2所示。(一)IFU光纤阵列一端(IFU微透镜端1)的检测,结构如图1所示,并结合图2。1)均匀光源发生器3发光后透过分束器2把IFU微透镜端1照亮,被照亮的IFU微透镜端1的微透镜阵列通过分束器2将光反射,依次通过准直透镜组4、成像透镜组5中直至探测器6接收到微透镜阵列的像,通过计算机计算微透镜阵列中每个微透镜成像的质心位置(x,y),可以计算得到微透镜阵列的排布精度。2)关闭均匀光源发生器3,从IFU狭缝端7入射均匀光,这时IFU光纤阵列(IFU微透镜端1)的光纤会出射均匀光,IFU微透镜端1的微透镜亮度会极大的降低,IFU光纤阵列的每根光纤都会有较强的均匀光出射,相当于光纤阵列被照亮,被照亮的光纤阵列通过分束器2反射到准直透镜组4和成像透镜组5中,探测器6接收光纤阵列的像,通过计算机计算IFU光纤阵列中每根光纤成像的质心位置(x,y),可以计算得到光纤阵列的排布精度。3)上面已经分别计算出微透镜阵列每个微透镜的质心位置和光纤阵列中每根光纤的质心位置精确坐标(x,y),通过比较对应的微透镜和光纤的质心位置,可以计算出每个微透镜和对应光纤的质心位置误差(Δx,Δy),从而知道微透镜阵列和光纤阵列的共轴误差。4)成像系统光路计算原理:设探测器6的靶面大小为B,IFU微透镜端1的尺寸为A,则消像差透镜组(准直透镜组4和成像透镜组5)的放大率M=B/A,若已知准直透镜组4的焦距为f1,则成像透镜组5的焦距f2=f1*M;这里分束器的反射率和透射率为合适的任意值,反射率加透过率的值约为1(100%),一般反射和透过比为1:1。5)光纤整列每根光纤或者微透镜阵列每个微透镜质心位置计算方法:利用光斑质心计算公式式中xi是光斑在x方向的位置,Ii是相应位置的强度;y方向用同样方法计算,可以得到每根光纤或者微透镜阵列每个微透镜质心位置(x,y)。6)光纤阵列每根光纤与相应微透镜阵列每个微透镜共轴误差计算(进一步解释第3)项):在5)中已知计算质心的方法,假设光纤阵列的一根光纤的质心位置为(x1,y1),相应微透镜阵列的一个微透镜的质心为(x2,y2),那么一根光纤对应相应的一个微透镜的质心误差为(Δx,Δy)=(x1-x2,y1-y2),计算出全部单根光纤的质心位置与对应微透镜的质心位置计算平均值,即可得到光纤阵列和微透镜阵列的共轴误差。(二)IFU狭缝端光纤排布检测,结构如图3所示,并结合图2。7)当检测的时候,将图1中IFU微透镜端1换成IFU狭缝端7,如图3所示。从IFU微透镜端1入射均匀光,这时IFU狭缝端7的光纤会出射均匀光,相当于IFU狭缝端7被照亮,被照亮的光纤列通过分束器2反射到准直透镜组4和成像透镜组5中,探测器6接收光纤列的像,通过计算机计算光纤阵列中每根光纤成像的质心位置(x,y),可以计算得到光纤的排布精度。如果IFU狭缝端7也有微透镜耦合,计算方法同1),计算公式同6)。实施例:IFU微透镜端检测:如图4a所示,为每个六边形为一个微透镜被照亮;如图4b为关闭均匀光源发生器3的光源,用另一个白光光源从IFU狭缝端7照射光纤,这时微透镜阵列光纤会被照亮,而微透镜不会被照亮,这时光纤端面的像经过分束器反射,经过准直透镜4和成像透镜5在探测器6上成像,并计算出光纤阵列在探测器上的位置;比较微透镜阵列中每个微透镜的中心位置和对应的本文档来自技高网...
积分视场光纤光谱仪光纤排布检测系统

【技术保护点】
积分视场光纤光谱仪光纤排布检测系统,其特征在于,包括:均匀光源发生器(3),用于均匀照亮IFU微透镜端(1)或IFU狭缝端(7)的光纤阵列、微透镜阵列;分束器(2),用于透射均匀光源发生器(3)的光,以及将被照亮的光纤阵列或微透镜阵列的光反射至成像系统;消像差透镜组,用于把光纤阵列或微透镜阵列成像到探测器(6)上;探测器(6),用于接收光纤阵列或微透镜阵列的像;计算机系统,用于计算探测器(6)接收到的光纤阵列或微透镜阵列的像的质心位置,比较每根光纤质心位置坐标,确定光纤阵列排布精度;或比较每个微透镜质心位置坐标,确定微透镜排布精度。

【技术特征摘要】
1.积分视场光纤光谱仪光纤排布检测系统,其特征在于,包括:均匀光源发生器(3),用于均匀照亮IFU微透镜端(1)或IFU狭缝端(7)的光纤阵列、微透镜阵列;分束器(2),用于透射均匀光源发生器(3)的光,以及将被照亮的光纤阵列或微透镜阵列的光反射至成像系统;消像差透镜组,用于把光纤阵列或微透镜阵列成像到探测器(6)上;探测器(6),用于接收光纤阵列或微透镜阵列的像;计算机系统,用于计算探测器(6)接收到的光纤阵列或微透镜阵列的像的质心位置,比较每根光纤质心位置坐标,确定光纤阵列排布精度;或比较每个微透镜质心位置坐标,确定微透镜排布精度。2.根据权利要求1所述的积分视场光纤光谱仪光纤排布检测系统,其特征在于,所述消像差透镜组包括准直透镜组(...

【专利技术属性】
技术研发人员:常亮敦广涛程向明
申请(专利权)人:中国科学院云南天文台
类型:新型
国别省市:云南;53

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1