一种信息推送方法和系统技术方案

技术编号:14894953 阅读:87 留言:0更新日期:2017-03-29 10:14
本申请公开了一种信息推送方法和系统,其中方法包括:客户端在播放可推送广告的视频时,按照预设的帧提取策略,提取当前播放的视频帧,根据所述视频帧,生成相应的用自然语言表达的场景描述语句并发送给服务器;所述服务器从所述场景描述语句中提取出用于选择推送广告的关键词;根据所述关键词和广告的热度确定当前需要推送的广告,并发送给所述客户端显示所述广告。采用本发明专利技术,可以在用户播放视频时自动地提供用户感兴趣概率较大的产品信息。

【技术实现步骤摘要】

本专利技术涉及计算机应用技术,特别是涉及一种信息推送方法和系统
技术介绍
目前常用的广告推荐方法有多种,主要包括如下几种:一、基于用户偏好获取技术:在电视平台上,通过统计用户偏好信息,推荐相应地广告。该方法中,由于服务器收集用户偏好信息需要往往存在巨大误差,推荐结果通常不具有针对性,即所推荐的信息与用户的实际偏好往往不匹配。二、基于交互推荐技术:在电视平台上,用户主动与电视客户端交互信息(如用户输入或选择广告订阅信息),服务器根据用户交互信息,推荐对应广告。该方法依赖于用户主动获取广告,即需要用户提交广告订阅信息。由此可见,上述传统的广告推荐方法存在信息推送的准确度低或者依赖用户操作无法在视频播放时实现广告的自动推送等问题。
技术实现思路
有鉴于此,本专利技术的主要目的在于提供一种信息推送方法和系统,可以在用户播放视频时自动地提供用户感兴趣概率较大的产品信息。为了达到上述目的,本专利技术提出的技术方案为:一种信息推送方法,包括:客户端在播放可推送广告的视频时,按照预设的帧提取策略,提取当前播放的视频帧,根据所述视频帧,生成相应的用自然语言表达的场景描述语句并发送给服务器;所述服务器从所述场景描述语句中提取出用于选择推送广告的关键词;根据所述关键词和广告的热度确定当前需要推送的广告,并发送给所述客户端显示所述广告。一种信息推送系统,包括:客户端,用于在播放可推送广告的视频时,按照预设的帧提取策略,提取当前播放的视频帧,根据所述视频帧,生成相应的用自然语言表达的场景描述语句并发送给服务器;服务器,用于从所述场景描述语句中提取出用于选择推送广告的关键词;根据所述关键词和广告的热度确定当前需要推送的广告,并发送给所述客户端显示所述广告。综上所述,本专利技术提出的信息推送方法和系统,客户端按照预设的提取策略,对当前播放的视频帧进行实时地提取,之后针对所提取的视频帧,生成相应的用自然语言表达的场景描述语句,服务器根据场景描述语句和广告的热度,自动地为用户匹配当前需要推送的产品信息。因此,采用本专利技术,可以自动地为用户推送与当前播放视频的场景契合度很高且用户感兴趣概率较大的产品信息。附图说明图1为本专利技术实施例的方法流程示意图;图2为本专利技术实施例的系统结构示意图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本专利技术作进一步地详细描述。本专利技术的核心思想是:按照一定提取策略,动态地实时提取当前播放的视频帧,根据该视频帧自动地为用户提供与视频帧的场景契合度很高的产品信息。图1为本专利技术实施例的流程示意图,如图1所示,该实施例实现信息推送方法主要包括:步骤101、客户端在播放可推送广告的视频时,按照预设的帧提取策略,提取当前播放的视频帧,根据所述视频帧,生成相应的用自然语言表达的场景描述语句并发送给服务器。本步骤中,考虑到视频帧的场景中往往隐含地包含产品信息,因此,将按照一定的策略对当前正在播放的视频帧进行提取,并对提取的视频帧中的场景用自然语言进行描述后发给服务器,以便此后服务器可以基于该场景描述语言和广告的热度,选择出当前推送的产品信息。例如,比如都市剧《速度与激情》系列出现的车,图像自然语言描述能够产生比如“汽车在互相追逐”,电视剧《来自星星的你》出现化妆的场景,图像自然语言描述能够产生比如“一个女人在化妆”等信息。这里需要说明的是,本步骤通过实时地提取视频帧,进行视频内容的自动捕捉,而不需要预先进行视频的缓存,如此,可以在用户播放直播视频时,不需要用户暂停视频的播放即可实时地为用户提供其感兴趣的产品信息。考虑到过度频繁地进行视频帧的提取会影响处理效率,也会带来大量噪声,因此在本步骤中,将采用一定的提取策略进行提取视频帧,以便对视频帧的提取时机进行控制。较佳地,所述帧提取策略可以包括以下内容:如果当前视频帧属于点播视频的帧且所属镜头的属性信息包含预设的关键词,则提取该视频帧;如果当前视频帧属于直播视频且当前到达了预设的提取周期,则对当前视频帧进行基于图像梯度方向直方图HOG描述子的人员检测,如果检测到人,则提取该视频帧。在上述策略中,考虑到人们往往对人类参与互动的物品比较感兴趣,因此,在视频帧中有人出现的时候,将提取该视频帧,以便可以进一步基于该视频帧中的场景为用户提供其感兴趣的广告信息。所述提取周期用于控制视频提取的频度,本领域技术人员可根据实际需要设置合适取值。较佳地,可以采用下述方法生成相应的用自然语言表达的场景描述语句:根据所述视频帧的图像,利用预先构建的图像自然语言描述模型,生成相应的场景描述语句;根据所述视频帧的语音和字幕信息,生成相应的场景描述语句。在实际应用中,可以根据一系列用于进行模型训练的图像,采用最大似然方法,生成图像自然语言描述模型,具体地,可以采用下述方法实现:对于每个预设的用于模型训练的图像,采用卷积神经网络(CNN),将所述用于模型训练的图像表征为特征矢量的集合;根据所述特征矢量的集合,采用预设的循环神经网络(RNN)进行训练模型,得到所述图像自然语言描述模型。在实际应用中,本领域技术人员可以根据实际需要选择合适的循环神经网络,例如可以选择简单的Elamn神经网络,也可以选择准确率更高的长短期记忆神经网络(LSTM)。上述模型构建方法中,采用CNN将用于模型训练的图像表征为特征矢量的集合以及根据所述特征矢量的集合采用RNN进行训练模型的具体方法为本领域技术人员所掌握,在此不再赘述。步骤102、所述服务器从所述场景描述语句中提取出用于选择推送广告的关键词;根据所述关键词和广告的热度确定当前需要推送的广告,并发送给所述客户端显示所述广告。本步骤中,将从场景描述语句中提取出用于选择广告的关键词,并根据所提出的关键词和广告的热度确定当前需要推送的广告,如此,可以确保所确定出的广告与视频场景中出现的产品相匹配并且尽可能地与用户的兴趣相匹配,从而可以提高产品信息推送的准确度较佳地,可以采用下述方法从所述场景描述语句中提取出用于选择推送广告的关键词:对所述场景描述语句进行单词的划分,并确定所得到的各单词的词性;将所述单词中的名词作为所述用于选择推送广告的关键词。较佳地,可以采用下述方法根据所述关键词和广告的热度确定当前需要推送的广告:步骤a1、判断所述视频的类型是否为点播视频且所述视频的内容标签中是否包含指定广告,如果是,则执行步骤a2;否则,执行步骤a3。本步骤中,如果当前播放的是点播视频且已预先指定了需要推送的广告,则可以直接执行步骤a2,将所指定的广告作为当前推送的广告,否则,将进入步骤a3,以便进一步基于从视频帧中提取出的关键词以及广告热度,选择出当前需要推送的广告。步骤a2、将所述指定广告作为当前需要推送的广告,退出所述确定当前需要推送的广告的过程。步骤a3、对于每个所述关键词,根据预设的广告词特征向量映射表,确定该关键词的特征向量,并根据该特征向量,利用余弦相似度计算该关键词与每种广告类的相似度;当所述相似度中的最大值大于预设的相似度阈值时,将对应的关键词作为候选关键词,同时将对应的广告类作为候选广告类。上述方法中,通过计算关键词与每种广告类的相似度,确定出用于选择推送广告的候选关键词和对应的候选广告类。所述广告词特征向量映射表为预设的用于表征各广告关键词对应的本文档来自技高网...

【技术保护点】
一种信息推送方法,其特征在于,包括:客户端在播放可推送广告的视频时,按照预设的帧提取策略,提取当前播放的视频帧,根据所述视频帧,生成相应的用自然语言表达的场景描述语句并发送给服务器;所述服务器从所述场景描述语句中提取出用于选择推送广告的关键词;根据所述关键词和广告的热度,确定当前需要推送的广告,并发送给所述客户端显示所述广告。

【技术特征摘要】
1.一种信息推送方法,其特征在于,包括:客户端在播放可推送广告的视频时,按照预设的帧提取策略,提取当前播放的视频帧,根据所述视频帧,生成相应的用自然语言表达的场景描述语句并发送给服务器;所述服务器从所述场景描述语句中提取出用于选择推送广告的关键词;根据所述关键词和广告的热度,确定当前需要推送的广告,并发送给所述客户端显示所述广告。2.根据权利要求1所述的方法,其特征在于,所述帧提取策略包括:如果当前视频帧属于点播视频的帧且所属镜头的属性信息包含预设的关键词,则提取该视频帧;如果当前视频帧属于直播视频且当前到达了预设的提取周期,则对当前视频帧进行基于图像梯度方向直方图HOG描述子的人员检测,如果检测到人,则提取该视频帧。3.根据权利要求1所述的方法,其特征在于,所述生成相应的用自然语言表达的场景描述语句包括:根据所述视频帧的图像,利用预先构建的图像自然语言描述模型,生成相应的场景描述语句;根据所述视频帧的语音和字幕信息,生成相应的场景描述语句。4.根据权利要求3所述的方法,其特征在于,所述图像自然语言描述模型的构建包括:对于每个预设的用于模型训练的图像,采用卷积神经网络CNN,将所述用于模型训练的图像表征为特征矢量的集合;根据所述特征矢量的集合,采用预设的循环神经网络RNN进行训练模型,得到所述图像自然语言描述模型,所述循环神经网络RNN为Elamn神经网络或长短期记忆神经网络LSTM。5.根据权利要求1所述的方法,其特征在于,所述从所述场景描述语句中提取出用于选择推送广告的关键词包括:对所述场景描述语句进行单词的划分,并确定所得到的各单词的词性;将所述单词中的名词作为所述用于选择推送广告的关键词。6.根据权利要求1所述的方法,其特征在于,所述根据所述关键词和广告的热度确定当前需要推送的广告,包括:a1、判断所述视频的类型是否为点播视频且所述视频的内容标签中是否包含指定广告,如果是,则执行步骤a2;否则,执行步骤a3;a2、将所述指定广告作为当前需要推送的广告,退出所述确定当前需要推送的广告的过程;a3、对于每个所述关键词,根据预设的广告词特征向量映射表,确定该关键词的特征向量,并根据该特征向量,利用余弦相似度计算该关键词与每种广告类的相似度;当所述相似度中的最大值大于预设的相似度阈值时,将对应的关键词作为候选关键词,同时将对应的广告类作为候选广告类;a4、查找是否存在以所述候选关键词作为广告关键词的广告,如果有,则将所查找出的广告作为候选广告;a5、当所述候选广告为2个以上时,选择其中优先级最高的广告作为当前需要推送的广告,当所述候选广告为1个时,则将该候选广告作为当前需要推送的广告;当没有所述候选广告时,根据预设的各广告类之间的关联关系,采用协同过滤的方法,选择所述候选广告类下热点最高的广告作为当前需要推送的广告。7.根据权利要求6所述的方法,其特征在于,所述广告词特征向量映射表的生成包括:设置每个广告的广告关键词集合;对于每个所述广告关键词,根据该广告关键词所属的广告类,采用词向量的方式,生成该广告关键词的特征向量;根据所有广告关键词的特征向量,生成所述广告词特征向量映射表。8.根据权利要求6所述的方法,其特征在于,所述候选广告类下热点最高的广告的确定方法包括:根据系统中每个用户的点击或购买广告产品的历史记录数据,利用MinHash算法对用户进行分类,其中,同一类用户中两两之间的相似度大于预设的相似阈值;将当前所述客户端所属用户所在用户类下的所有用户作为相似用户;根据所述相似用户点击或购买所述候选广告类下广告产品的历史记录数据,采用协同过滤模型,确定所述候选广告类下热点最高的广告。9.根据权利要求6所述的方法,其特征在于,所述计算该关键词与每种广告类的相似度包括:对于每个预设的广告类,计算属于该广告类的所有广告关键词的特征向量的平均值,将该平均值作为该广告类的中心特征向量;利用...

【专利技术属性】
技术研发人员:吴小燕陈洁
申请(专利权)人:三星电子中国研发中心三星电子株式会社
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1