当前位置: 首页 > 专利查询>东南大学专利>正文

一种大批量、多步合成直径可控的超长银纳米线的方法技术

技术编号:14894486 阅读:62 留言:0更新日期:2017-03-29 09:49
本发明专利技术是一种大批量、多步合成直径可控的超长银纳米线的方法,首先将含有聚乙烯吡咯烷酮和氯化钠的乙二醇溶液充分加热,得到具有强还原性溶液,再加入硝酸银乙二醇溶液,生成大量晶种;利用双氧水实现对晶种的筛选出少量特定尺寸的晶种;立即升温提高反应速率,突破硝酸的刻蚀晶种的阈值;降温长时间反应,减慢反应速率,降低自成核生成各向同性晶种的几率,同时促进小核吸附在大核或纳米线的径向上,得到超长的银纳米线。该方法制备的银纳米线直径在数纳米及微米尺度范围内可调,长度可达300μm以上,比传统方法制备的银纳米线直径可调范围更大、长度更长,且该方法制备的纳米线产率高,可控性好,能够实现批量制备,实现工业化应用。

【技术实现步骤摘要】

本专利技术涉及纳米材料领域、波导领域和薄膜器件领域,特别涉及一种大批量、多步合成直径可控的超长银纳米线的方法
技术介绍
银纳米线具有块体银优良的导电性和导热性,是高效传输电信号的最佳选择;同时银纳米线作为一维贵金属纳米材料,具有表面等离激元效应,能激励起沿金属和介质界面处传播的表面等离激元模式,将光束缚在纳米尺度内传输,突破了光学衍射极限,在纳米光电领域具有极大的应用潜力;此外,银纳米线也能与光相互作用产生表面等离子体共振,从而在紫外、可见光波段范围内对光有强烈的吸收,对于薄膜器件和非线性增强方面的应用意义重大。银纳米线的这些特性和应用方向与其直径密切相关,直径粗的纳米线适合用于亚波长波导器件领域,而细的则主要应用在薄膜器件领域中。在波导器件领域,由于受到光学衍射极限的限制,光在传统的介质波导中的模式尺寸一般在数微米至数十微米之间,后来利用高折射率材料制成的波导能将光的模式尺寸限制在数百纳米的范围内,仍达不到与电子芯片集成的尺度,难以实现纳米集成光电系统和光电混合系统。基于表面等离激元的银纳米线波导,激励起在金属和介质界面纳米尺度的空间内传播的表面电磁波,能将光紧束缚在极小的空间内传播,这种束缚能力比传统的介质波导更强,支持的模式光斑更小,能远远突破衍射极限的限制,极大地提高了光学器件的集成度,是实现下一代超大规模集成化光子芯片系统的关键技术之一;同时由于银既能传输光信号,又能传输电信号,因此表面等离激元波导还能用于实现光电混合系统。光在银纳米线表面等离激元波导中传输时,传输效率与纳米线的直径密切相关。纳米线的直径越粗,约束在纳米线内部的能量就越多,外面的倏逝波能量越少,传播的距离也就越远。同时,光在纳米线内传输的模式与其直径关系密切,纳米线内高阶模的传输损耗相对于基模更大,必须用直径粗的纳米线来实现。另外,直径粗的纳米线也将会实现更多新型的应用,如应用于薄膜器件领域,利用粗线对光的散射作用制备导电反光薄膜;用于新能源领域,在太阳能电池背板上发挥作用,促进材料对光的二次吸收等。在纳米线直径变粗的同时也要增加其长度,长纳米线能与增益介质相互作用,实现长程传输,并进一步使亚波长波导器件的功能更加多元化。然而,目前银纳米线的直径最粗也仅为两三百纳米,长度为一百多微米左右,以此为波导对光束传输的距离较短,高阶模传输损耗大且功能单一,难以实现纳米光波导等在集成光电器件和光电混合电路上的实际应用。因此,制备出直径更粗、长度更长的纳米线是推动亚波长波导器件向前进一步发展并实现应用的必经之路。在薄膜器件领域,由于传统材料氧化铟锡(ITO)制备的薄膜器件柔韧性差、易碎、制作成本高且资源短缺,无法满足电子器件柔性化发展的需求。基于表面等离激元效应的银纳米线,与光相互作用激励起表面等离子体共振效应。该效应具有横向和纵向两个特征峰,当纳米线较长时,纵向特征峰红移至红外,在可见光波段只有横向峰,对于可见光波段的透光率较高。当透光率高的银纳米线相互连接形成网络时,会使薄膜器件具有优良的导电性能;同时银纳米线具有优异的曲挠性,化学性能稳定,制备简单,成本低,可用于工业生产,因此银纳米线被认为是替代ITO制备新型薄膜器件的最具潜力的材料。银纳米线制成的薄膜器件性能取决于几个重要的参数:雾度(Haze)、透光率、方块电阻。Haze是描述人眼看到的事物的模糊程度的重要参数,是制约当前银纳米线薄膜器件发展的瓶颈。Haze取决于纳米线的宽光谱散射能力,即与纳米线的直径密切相关。粗纳米线对光的散射强,导致haze高,严重影响薄膜器件的清晰度;当纳米线直径达10nm左右时,能有效改善薄膜器件的haze问题,达到ITO薄膜器件的雾度级别。透光率是表征薄膜器件透光性的重要参数,与纳米线的表面等离子共振效应相关,随着纳米线的直径的降低,共振峰蓝移,对光的透过率更高;还与纳米线的长径比关系密切,当纳米线相互连接形成薄膜时,纳米线间由于交叉形成的节点会对光造成一定的遮挡,长径比越长,节点越少,透光性能也越好。方块电阻是表示薄膜器件导电性的参数,随着纳米线的直径的降低而增加,即纳米线越细,方块电阻越大,导电性越差。由此可见,减小纳米线的直径、提高长径比对于改善薄膜器件的haze和透光率的问题大有裨益,然而会一定程度上降低其导电性,出现了不可调和的矛盾。理论研究表明,直径为10nm左右的银纳米线能兼顾以上性能,在有效改善薄膜haze的同时,保证导电性优良。但是目前的制备方法难以实现10nm纳米线的制备,更不能实现大批量的、高产率的工业化生产。因此制备直径细、长径比高的纳米线是提高薄膜器件透光性、解决haze问题的必然选择。目前银纳米线的制备方法主要是多元醇法。利用乙二醇作为溶剂和还原剂,在聚乙烯吡咯烷酮的保护作用和氯化钠等添加剂的作用下,加热还原硝酸银,一步法制得银纳米线。此方法通过精确控制种子的产率及产量,实现对纳米线的可控生长。然而,一步法的种子晶种形成和纵向生长阶段同时进行,两个阶段相互干扰。在晶种形成阶段,沿着生成的晶种纵向生长会增加纳米线直径的不均匀性;在纵向生长阶段,自成核生成新的各向同性晶种,会严重干扰纳米线的生成,同时也消耗用于纳米线纵向生长的银源,降低银纳米线的长度和产率。一旦将反应的量扩大,体系中自成核形成的各向同性的晶种严重阻碍纳米线的生成,导致产物纳米线产率低甚至得不到纳米线,无法实现工业化生产。另外,种子的生长过程极易受到添加剂、药品纯度、温度、湿度、与空气的接触程度等不可控因素的干扰,均会对晶种生成阶段的反应造成致命的影响,从而导致实验的关键步骤即种子形成阶段很难精确控制,实验难以重复。众多研究人员在一步法上都开展了研究,但是目前仍然没有解决办法,不能满足银纳米线的可控生长、工业生产以及应用方面的要求,需要优化改善或提出新的银纳米线的制备方法,突破当前直径范围,得到直径均一、长度更长的纳米线,这是纳米线在波导器件和薄膜器件领域得以应用急需解决的问题。
技术实现思路
技术问题:本专利技术的目的是为了克服已有技术的不足之处,提出了一种大批量、多步合成直径可控的超长银纳米线的方法,该方法制备简单,重复性好,易于工业化生产;所制备出的银纳米线直径可控、长度超长,在薄膜器件和波导通光领域具有重要应用。技术方案:本专利技术的一种大批量、多步合成直径可控的超长银纳米线的方法包括以下步骤:步骤一:晶种筛选阶段将溶有表面活性剂的乙二醇溶液置于温度为140-160℃条件下加热,得具有强还原性的混合溶液I;将碱金属卤化物溶于乙二醇,加入到上述混合溶液I中得溶液II;将硝酸银溶于乙二醇,得到前驱体溶液,硝酸银在反应体系中的浓度为0.001-5mol/L;将前驱体溶液加入溶液II中,硝酸银被迅速还原,生成大量大小不一的多重孪晶的晶种和部分各向同性的晶种;向上述含有大量晶种的溶液中加入刻蚀剂,优先刻蚀掉不耐刻蚀的各向同性的晶种以及某些尺寸的多重孪晶和大部分各向同性的晶种,筛选出少量特定尺寸的多重孪晶晶种;步骤二:突破刻蚀多重孪晶晶种的阈值阶段在步骤一中向反应体系加入双氧水后,将反应温度迅速升高至160-200℃,高温下持续反应直至溶液中出现浑浊物;升温加快反应速率,直至突破副产物硝酸刻蚀溶液中少量多重孪晶晶种的阈值;步骤三:纵向生长阶段待反应体系中出现浑本文档来自技高网
...
一种大批量、多步合成直径可控的超长银纳米线的方法

【技术保护点】
一种大批量、多步合成直径可控的超长银纳米线的方法,包括以下步骤:步骤一:晶种筛选阶段将溶有表面活性剂的乙二醇溶液置于温度为140‑160℃条件下加热,得具有强还原性的混合溶液I;将碱金属卤化物溶于乙二醇,加入到上述混合溶液I中得溶液II;将硝酸银溶于乙二醇,得到前驱体溶液,硝酸银在反应体系中的浓度为0.001‑5mol/L;将前驱体溶液加入溶液II中,硝酸银被迅速还原,生成大量大小不一的多重孪晶的晶种和部分各向同性的晶种;向上述含有大量晶种的溶液中加入刻蚀剂,优先刻蚀掉不耐刻蚀的各向同性的晶种以及某些尺寸的多重孪晶和大部分各向同性的晶种,筛选出少量特定尺寸的多重孪晶晶种;步骤二:突破刻蚀多重孪晶晶种的阈值阶段在步骤一中向反应体系加入双氧水后,将反应温度迅速升高至160‑200℃,高温下持续反应直至溶液中出现浑浊物;升温加快反应速率,直至突破副产物硝酸刻蚀溶液中少量多重孪晶晶种的阈值;步骤三:纵向生长阶段待反应体系中出现浑浊物后,将反应温度降低至60‑140℃,在此条件下长时间充分反应;降温降低反应速率,减少自成核生成各向同性的晶种,使更多游离的银离子沿纳米线纵向被还原,得超长银纳米线。

【技术特征摘要】
1.一种大批量、多步合成直径可控的超长银纳米线的方法,包括以下步骤:步骤一:晶种筛选阶段将溶有表面活性剂的乙二醇溶液置于温度为140-160℃条件下加热,得具有强还原性的混合溶液I;将碱金属卤化物溶于乙二醇,加入到上述混合溶液I中得溶液II;将硝酸银溶于乙二醇,得到前驱体溶液,硝酸银在反应体系中的浓度为0.001-5mol/L;将前驱体溶液加入溶液II中,硝酸银被迅速还原,生成大量大小不一的多重孪晶的晶种和部分各向同性的晶种;向上述含有大量晶种的溶液中加入刻蚀剂,优先刻蚀掉不耐刻蚀的各向同性的晶种以及某些尺寸的多重孪晶和大部分各向同性的晶种,筛选出少量特定尺寸的多重孪晶晶种;步骤二:突破刻蚀多重孪晶晶种的阈值阶段在步骤一中向反应体系加入双氧水后,将反应温度迅速升高至160-200℃,高温下持续反应直至溶液中出现浑浊物;升温加快反应速率,直至突破副产物硝酸刻蚀溶液中少量多重孪晶晶种的阈值;步骤三:纵向生长阶段待反应体系中出现浑浊物后,将反应温度降低至60-140℃,在此条件下长时间充分反应;降温降低反应速率,减少自成核生成各向同性的晶种,使更多游离的银离子沿纳米线纵向被还原,得超长银纳米线。2.如权利要求1所述的一种大批量、多步合成直径可控的...

【专利技术属性】
技术研发人员:张晓阳张彤薛小枚
申请(专利权)人:东南大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1