一种银纳米线焊接方法技术

技术编号:14889358 阅读:52 留言:0更新日期:2017-03-28 20:08
本发明专利技术公开了一种银纳米线焊接方法,属于纳米焊接技术领域,其包括如下步骤:(1)将氦气导入等离子体发生装置中,接着对氦气施加高压脉冲电压以使氦气生成室温常压等离子体,然后将室温常压等离子体经由导管导出,获得室温常压等离子体射流;(2)将银纳米线薄膜置于室温常压等离子体射流下方,以使被等离子体射流辐射到的区域内的银纳米线交叉点处发生纳米级焊接;(3)在二维平面内移动银纳米线薄膜,以实现更大面积焊接。本发明专利技术方法可有效地将彼此分离的银纳米线在交叉点处焊接在一起,且不会对银纳米线原本的线状结构造成任何破坏,其焊接过程简单易行、省时高效,设备成本低廉,并且可实现大规模焊接。

【技术实现步骤摘要】

本专利技术属于纳米焊接
,更具体地,涉及一种银纳米线的纳米级焊接方法。
技术介绍
透明导电薄膜被广泛应用于光电器件,例如发光二极管、触控面板、太阳能电池等领域。在目前的工业生产上,铟锡氧化物(ITO)被广泛应用于透明导电薄膜的制备中。然而,铟锡氧化物的生产速率缓慢,并且生产过程中原料浪费非常严重,加上自然界中铟保有量的不可预知性,这些都使得铟锡氧化物的价格越来越昂贵。而且,铟锡氧化物本身易碎的特性也限制了它在柔性可伸缩电子器件上的应用。所以,人们在不断的寻找铟锡氧化物的替代品。银纳米线制备的薄膜是铟锡氧化物的良好替代品,它不仅生产成本低,而且拥有非常好的透光性、导电性和柔韧性。虽然银纳米线薄膜具有以上优良的特性,但是,银纳米线薄膜线与线之间交叉点处的接触非常的脆弱,这使得银纳米线薄膜的导电性、稳定性、抗弯折能力等都受到很大限制,这个问题阻碍了银纳米线薄膜的广泛应用。目前,被用于增强银纳米线交叉点处点接触的方法主要有以下几种:(1)激光微束点焊接法,通过微小的激光束定位到纳米线的交叉点处,实现交叉点的焊接,该方法的焊接效果比较好,但是成本很高,而且不利于大面积处理。(2)焦耳加热法,通过在银纳米线导电薄膜两端加载一个恒压电源,引起薄膜内部纳米线交叉点处的区域焦耳加热从而实现焊接,该方法虽然成本低廉,但是焊接效果并不太好,线与线之间的点接触仍然较弱。(3)高温加热法,在高温环境下,银纳米线出现熔融和再结晶现象,从而实现纳米线交叉点处的焊接,该方法虽然简单高效,但是容易破坏银纳米线本身的结构,影响到薄膜的性能。
技术实现思路
针对现有技术的以上缺陷或改进需求,本专利技术提供了一种银纳米线焊接方法,其目的在于,利用氦气产生的等离子体对银纳米线薄膜进行纳米级的焊接,该方法可有效地将彼此分离的银纳米线在交叉点处焊接在一起,且不会对银纳米线原本的线状结构造成任何破坏,纳米焊接过程简单易行、省时高效,设备成本低廉,并且可实现大规模加工处理。利用该方法处理的银纳米线薄膜可被广泛应用于柔性透明光电器件中。为实现上述目的,本专利技术提供了一种银纳米线焊接方法,其特征在于,其包括如下步骤:(1)将氦气作为工作气体导入等离子体发生装置中,接着对氦气施加高压脉冲电压以使所述氦气生成室温常压等离子体,然后将所述室温常压等离子体经由导管导出,从而获得室温常压等离子体射流;(2)将银纳米线薄膜置于所述室温常压等离子体射流下方,以使被等离子体射流辐射到的区域内的银纳米线交叉点处发生纳米级焊接;(3)在二维平面内移动所述银纳米线薄膜,以实现更大面积的银纳米线薄膜上交叉点的纳米焊接。进一步的,所述工作气体的流量为50mL/min~300mL/min,优选为100mL/min。进一步的,所述导管为石英导管,该石英导管套接在保护罩内,所述保护罩内通入有保护气体,以限制外界空气对纳米焊接过程的影响。进一步的,所述保护气体为惰性气体或氮气。进一步的,所述保护气体的流量为4L/min~6L/min。进一步的,所述导管管口与银纳米线薄膜表面的距离为8mm~12mm。优选的,所述导管管口与银纳米线薄膜表面的距离为10mm。进一步的,所述银纳米线薄膜的移动速率为5mm/s~20mm/s。优选的,银纳米线薄膜的移动速率为10mm/s。总体而言,通过本专利技术所构思的以上技术方案与现有技术相比,能够取得下列有益效果:1.本专利技术方法中,等离子体射流发生之后直接作用于银纳米线薄膜表面,在短时间内实现对薄膜中所有纳米线交叉点的焊接。其操作过程简单易行、省时高效。2.本专利技术中所使用的等离子体射流是在室温常压条件下生成的,无需任何特殊环境,样品处理直接在空气环境下完成,这极大地降低了设备成本,使其设备成本低廉。3.不论多大的银纳米线透明导电薄膜样品,都可以通过面扫的方式实现大规模的表面纳米焊接,因此,本专利技术方法易于实现大规模加工处理。4.本专利技术方法可有效地将彼此分离的银纳米线在交叉点处焊接在一起,且不会对银纳米线原本的线状结构造成任何破坏。附图说明图1是本专利技术方法中等离子体射流发生装置示意图;图2是本专利技术实施例1中等离子体射流处理前后的银纳米线交叉点处的扫描电子显微镜图片,图2(a)为处理前,图2(b)为处理后;图3是本专利技术实施例1中银纳米线薄膜电阻随等离子体处理次数的变化关系图;图4为是本专利技术实施例2中得到的银纳米线薄膜的良好抗弯折能力的数据曲线。在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-第一进气口2-第二进气口3-高压脉冲电源4-不锈钢电极5-保护罩6-石英导管7-等离子体射流8-银纳米线薄膜9-基底具体实施方式为了使本专利技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本专利技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利技术,并不用于限定本专利技术。此外,下面所描述的本专利技术各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。本专利技术提供了一种银纳米线焊接方法,其包括如下步骤:(1)将氦气作为工作气体导入等离子体发生装置中,接着对氦气施加高压脉冲电压以使所述氦气生成室温常压等离子体,然后将所述室温常压等离子体经由导管导出,从而获得室温常压等离子体射流。其中,工作气体的流量为50mL/min~300mL/min,优选为100mL/min。所述导管为石英导管,该石英导管套接在保护罩内,所述保护罩内通入有保护气体,以最大程度的限制外界空气对纳米焊接过程的影响。所述保护气体为惰性气体或氮气。所述保护气体的流量为4L/min~6L/min。所述导管管口与银纳米线薄膜表面的距离为8mm~12mm。优选的,所述导管管口与银纳米线薄膜表面的距离为10mm。导管管口与银纳米线薄膜表面的距离低于设定值,将有可能破坏银纳米线的原有结构。优选的,本步骤中,工作气体和保护气体的纯度都大于99%。(2)将银纳米线薄膜置于所述室温常压等离子体射流下方,以使被等离子体射流辐射到的区域内的银纳米线交叉点处发生纳米级焊接;(3)在二维平面内移动所述银纳米线薄膜,以实现更大面积的银纳米线薄膜上交叉点的纳米焊接。所述银纳米线薄膜的移动速率为5mm/s~20mm/s。优选的,银纳米线薄膜的移动速率为10mm/s。图1是本专利技术方法中等离子体射流发生装置示意图,由图可知,等离子体射流发生装置包括高压脉冲电源3、不锈钢电极4、石英导管6、保护罩5。在本专利技术的一个实施例中,不锈钢电极4置于内径为1mm的石英导管6内,石英导管6套接在保护罩5内,保护罩的内径为5mm。由第二进气口2向保护罩5内通入保护气体氮气。在实施工程实践中,先通入氮气,将装置中空气排出后,将流量譬如为50mL/min的工作气体氦气由第一进气口1导入。在电源输入端3施加高压脉冲电压,从而产生等离子体射流7。基底9上的银纳米线薄膜8置于距离石英导管6管口下方,以使等离子体射流7对薄膜进行辐照。基底9置于电动二维台上,以能在电动二维台的移动时候而移动,进而实现对银纳米线薄膜的移动。为了更详细的阐述本专利技术方法,下面结合实施例说明如下:实施例1本专利技术实施例的银纳米线纳米级焊接方法包括如下步骤:(1)如图1所示,由第二进气口2向保护罩5内通入保护气体氮气,流本文档来自技高网...
一种银纳米线焊接方法

【技术保护点】
一种银纳米线焊接方法,其特征在于,其包括如下步骤:(1)将氦气作为工作气体导入等离子体发生装置中,接着对氦气施加高压脉冲电压以使所述氦气生成室温常压等离子体,然后将所述室温常压等离子体经由导管导出,从而获得室温常压等离子体射流;(2)将银纳米线薄膜置于所述室温常压等离子体射流下方,以使被等离子体射流辐射到的区域内的银纳米线交叉点处发生纳米级焊接;(3)在二维平面内移动所述银纳米线薄膜,以实现更大面积的银纳米线薄膜上交叉点的纳米焊接。

【技术特征摘要】
1.一种银纳米线焊接方法,其特征在于,其包括如下步骤:(1)将氦气作为工作气体导入等离子体发生装置中,接着对氦气施加高压脉冲电压以使所述氦气生成室温常压等离子体,然后将所述室温常压等离子体经由导管导出,从而获得室温常压等离子体射流;(2)将银纳米线薄膜置于所述室温常压等离子体射流下方,以使被等离子体射流辐射到的区域内的银纳米线交叉点处发生纳米级焊接;(3)在二维平面内移动所述银纳米线薄膜,以实现更大面积的银纳米线薄膜上交叉点的纳米焊接。2.如权利要求1所述的银纳米线焊接方法,其特征在于,所述工作气体的流量为50mL/min~300mL/min。3.如权利...

【专利技术属性】
技术研发人员:刘浪于尧柳林吴跃
申请(专利权)人:华中科技大学
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1