一种基于小波分析的光伏组件故障诊断方法技术

技术编号:14882256 阅读:110 留言:0更新日期:2017-03-24 04:41
本发明专利技术公开了一种基于小波分析的光伏组件故障诊断方法,其特征在于,包括以下步骤:步骤A:对信号进行去噪处理;步骤B:对所获得的二层低频信号进行归一化处理;步骤C:对所述步骤B中归一化的数据再次降噪,并进行奇异性检测,获得各自趋势项信号的奇异值;步骤D:对比奇异值,获得故障发生点的特征值,通过设立的故障阈值对故障进行诊断,若超过阈值,表示系统存在故障,并及时报警,反之,继续步骤A。本发明专利技术摆脱了用传感器检测故障的方法,运用小波奇异值检测实现了光伏组件的故障诊断,有效地解决复杂条件下的故障检测,具有较高的时效性和较好的经济性。

【技术实现步骤摘要】

本专利技术涉及一种基于小波分析的光伏组件故障诊断方法,属于光伏发电

技术介绍
近年来,我国光伏产业发展迅猛,截止到2015年,累计光伏装机容量达到43GW,跃居光伏装机容量世界第一位,并且最近光伏产品有着向小型化,家用化的趋势发展。光伏发电系统的发电性能与辐照度、温度有着很大的关联性,由于室外的光伏产品经常处于高温的曝晒,雨水侵蚀,运行环境恶劣,从而导致光伏产品的出现运行故障比较常见。因此对光伏电站的智能检测与维护越来越成为一个比较现实的问题,为提高光伏产品的运维便捷性,各类光伏产品的智能故障诊断的方法应运而生。光伏组件的常见运行故障有阴影遮挡,组件老化,组件旁路,短路,热斑,系统故障,也包括隐裂,脱胶等。由于光伏产品受辐照度、温度的影响很大,一般的方法对早期的故障很难检测到,从国外文献上可知,目前常采用神经网络、模糊算法等知识判别故障类型,然而对于神经网络,是需要给有故障的特征数据进行训练的,而对光伏产品何时出现故障的定义不尽相同,且很难检测到早期故障,因此神经网络的方法有着不确定性,只能检测到比较严重的故障。如何实时检测到光伏产品的故障,尤其是早期故障显得比较重要。
技术实现思路
本专利技术的目的在于利用一种基于小波分析的光伏组件故障诊断方法来实时检测光伏组件的故障,尤其是早期故障;以解决现阶段我国人工判别故障出现的时间点的不准确性,随机性,不经济性的问题,同时解决神经网络所需要的历史数据搜集,选取的困难。为了解决上述技术问题,本专利技术提供一种基于小波分析的光伏组件故障诊断方法,包括以下步骤:步骤A:对信号进行去噪处理;将共面辐照信号与功率信号按照合适的间隔提取出一天的数据量,然后运用指数平滑方法对信号进行平滑处理,滤除干扰信号,最后将所获得的功率信号与辐照信号进行小波提升变换分解,重构出低频信号,过滤掉高频信号;步骤B:对所获得的二层低频信号进行归一化处理;步骤C:对所述步骤B中归一化的数据再次降噪,并进行奇异性检测,获得各自趋势项信号的奇异值;步骤D:对比奇异值,获得故障发生点的特征值,通过设立的故障阈值对故障进行诊断,若超过阈值,表示系统存在故障,并及时报警,反之,继续步骤A。所述步骤C具体包括以下步骤:C1)对所获得的二层归一化低频信号按照Daubechies小波(db4)进行分解,再将分解后的信号,采用wrcoef函数进行重构,以降低噪声降低辐照度与功率值的不匹配度;C2)对重构功率、辐照信号进行小波第一类奇异点检测;C3)对重构的功率、辐照信号进行数值微分,对数值微分后的功率、辐照信号进行小波第二类奇异点检测;C4)分别将辐照信号与功率信号的第一、二类奇异点数值相减,然后将第一类奇异点检测信号与第二类奇异点检测信号求和,获得功率是信号与辐照信号的不匹配值,即获得最后的故障信号;所述步骤A中对信号进行去燥处理的具体方法为:对辐照信号、功率信号,首先按照式(1)进行指数平滑去噪,再按照式(2)小波提升变换db2将信号分解为二层信号;按照式(3)重构第二层低频信号,很好的保留了原始信号的趋势项,舍去了随机项,有效的减少了外界噪声;S1:初始平滑值;y1:初始实际值;St:时间t的平滑值;yt:时间t的实际值;St-1:时间t-1的平滑值;α:平滑常数,其取值范围为[0,1];对平滑处理后的信号采取提升小波变换,要分选取数据与实现变换两种,分别对选取的数据进行小波分解与重构。分解算法为:重构算法为:S为将原始数据分为奇数集和偶数集的函数;P为通过相邻信号来预测下一个信号的函数;U为用来找一个更好的子集来逼近原始数据的函数;M为把尺度系数和小波系数重构成原始数据的函数;Cj:原始数据;Cj-1:为尺度系数;Dj-1:为小波系数;这样用提升小波的方法对信号进行2层分解,把第二层的低频信号作为备用数据以进行下一步处理过程。所述步骤B中归一化处理具体方法为:由于辐照度与功率具有不同的量纲,需对其进行归一化处理,对所获得的二层低频信号按照式(4)归一化处理此时的归一化要把数据归一化到[01]的区间内,以防止出现正负值相消的情况;其中X:原始数据;Xmin:原始数据的最小值;Xmax:原始数据的最大值;X*:归一化后的数据;所述步骤C1中再次降噪方法为:将利用Daubechies小波(db4)分解对归一化后的数据进行分解,然后运用式(5)的wrcoef函数对分解后的信号中的斜线高频部分进行重构,去除噪声,进一步降低辐照信号和功率信号的不匹配度;y*=wrceof('d',c,s,'db4',1)(5)其中,y*:重构信号;d:对斜线高频部分重构;c,s:是经小波分解后处理的信号。所述步骤C2中,对归一化后的小波高频重构信号进行小波第一类间断点检测,如式(6),找出其本身有突变的点以进行检测;yy=diff(y*)(6)其中,yy为对重构信号的微分值;所述步骤C3中,对归一化后的小波高频重构功率信号、辐照信号分别进行数值微分,提取出变换速率,获得其变化快慢的数值,找出其中有突变的点,进行第二类间断点小波检测。所述步骤D中,对不匹配值设立一个相关联合理的阈值,考虑到实际差值及方法的准确性,给定阈值为0.02,以进行实时故障。本专利技术的有益效果为:本专利技术摆脱了用传感器检测故障的方法,运用小波奇异值检测实现了光伏组件的故障诊断,有效地解决复杂条件下的故障检测,具有较高的时效性和较好的经济性附图说明图1为本专利技术的流程图;图2为对功率信号采取指数平滑处理和小波提升变换处理结果;图3为对图2中信号进行二层低频功率信号归一化处理结果;图4为辐照信号采取指数平滑处理和小波提升变换处理结果;图5为对图4中信号进行二层低频辐照信号归一化处理结果;图6为图3中二层低频功率信号的第二类小波奇异点检测结果;图7为图5中二层低频辐照信号的第二类小波奇异点检测结果;图8为2016年8月9日故障实验结果;图9为2016年5月1-7日无故障实验结果。具体实施方式为使本专利技术实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本专利技术。预处理如图1所示的本专利技术的流程图,本专利技术的光伏组件故障诊断方法,包括以下步骤:步骤A:对信号进行去噪处理。选取任意一天5点到19点的的辐照信号与功率信号,原始信号为5s一次,有10080组数据,为消除个别点数据的偏差,按照每15组数据取均值,一共672组。首先按如下公式用二次指数平滑对共面辐照信号和功率信号平滑处理,滤除部分干扰。S1:初始平滑值;y1:初始实际值;St:时间t的平滑值;yt:时间t的实际值;St-1:时间t-1的平滑值;α:平滑常数,其取值范围为[0,1];对平滑处理后的信号采取提升小波变换,要分选取数据与实现变换两种,分别对选取的数据进行小波分解与重构:分解算法为:重构算法为:S就是将原始数据分为奇数集和偶数集的函数;P就是通过相邻信号来预测下一个信号的函数;U就是用来找一个更好的子集来逼近原始数据的函数;M就是把尺度系数和小波系数重构成原始数据的函数;Cj:原始数据;Cj-1:为尺度系数;Dj-1:为小波系数;这样用提升小波的方法对信号进行2层分解,把第二层的低频信号作为备用数据以进行下一步处理过程。具体可见图2和图4,它们分别是功率表信号和辐照信号本文档来自技高网...
一种基于小波分析的光伏组件故障诊断方法

【技术保护点】
一种基于小波分析的光伏组件故障诊断方法,其特征在于,包括以下步骤:步骤A:对信号进行去噪处理;将共面辐照信号与功率信号按照合适的间隔提取出一天的数据量,然后运用指数平滑方法对信号进行平滑处理,滤除干扰信号,最后将所获得的功率信号与辐照信号进行小波提升变换分解,重构出低频信号,过滤掉高频信号;步骤B:对所获得的二层低频信号进行归一化处理;步骤C:对所述步骤B中归一化的数据再次降噪,并进行奇异性检测,获得各自趋势项信号的奇异值;步骤D:对比奇异值,获得故障发生点的特征值,通过设立的故障阈值对故障进行诊断,若超过阈值,表示系统存在故障,并及时报警,反之,继续步骤A。

【技术特征摘要】
1.一种基于小波分析的光伏组件故障诊断方法,其特征在于,包括以下步骤:步骤A:对信号进行去噪处理;将共面辐照信号与功率信号按照合适的间隔提取出一天的数据量,然后运用指数平滑方法对信号进行平滑处理,滤除干扰信号,最后将所获得的功率信号与辐照信号进行小波提升变换分解,重构出低频信号,过滤掉高频信号;步骤B:对所获得的二层低频信号进行归一化处理;步骤C:对所述步骤B中归一化的数据再次降噪,并进行奇异性检测,获得各自趋势项信号的奇异值;步骤D:对比奇异值,获得故障发生点的特征值,通过设立的故障阈值对故障进行诊断,若超过阈值,表示系统存在故障,并及时报警,反之,继续步骤A。2.根据权利要求1所述的一种基于小波分析的光伏组件故障诊断方法,其特征在于,所述步骤C具体包括以下步骤:C1)对所获得的二层归一化低频信号按照Daubechies小波(db4)进行分解,再将分解后的信号,采用wrcoef函数进行重构,以降低噪声降低辐照度与功率值的不匹配度;C2)对重构功率、辐照信号进行小波第一类奇异点检测;C3)对重构的功率、辐照信号进行数值微分,对数值微分后的功率、辐照信号进行小波第二类奇异点检测;C4)分别将辐照信号与功率信号的第一、二类奇异点数值相减,然后将第一类奇异点检测信号与第二类奇异点检测信号求和,获得功率是信号与辐照信号的不匹配值,即获得最后的故障信号;3.根据权利要求1所述的一种基于小波分析的光伏组件故障诊断方法,其特征在于,所述步骤A中对信号进行去燥处理的具体方法为:对辐照信号、功率信号,首先按照式(1)进行指数平滑去噪,再按照式(2)小波提升变换db2将信号分解为二层信号;按照式(3)重构第二层低频信号,很好的保留了原始信号的趋势项,舍去了随机项,有效的减少了外界噪声;S1=y1St=yt*α+(1-α)*St-1---(1)]]>S1:初始平滑值;y1:初始实际值;St:时间t的平滑值;yt:时间t的实际值;St-1:时间t-1的平滑值;α:平滑常数,其取值范围为[0,1];对平滑处理后的信号采取提升小波变换,要分选取数据与实现变换两种,分别对选取的数据进行小波分解与重构。分解算法为:S(Cj):=(Cj-1,Dj-1)Dj-1:=Dj-1-P(Cj-1)Cj-1:=Cj-1+U(Dj-1)---(2)]]>重构算法为:Cj-1...

【专利技术属性】
技术研发人员:丁坤丁汉祥王越刘振飞高列李元良陈富东
申请(专利权)人:河海大学常州校区
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1